Emergent phenomena of SrRuO₃ and their control in the 2-dimensional limit

Tae Won Noh

Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul 08826, Korea Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea

International School of Oxide Electronics | Cargèse, France | September 4, 2023

Content

1. Introduction

- □ Emergent phenomena in transition metal oxides and their heterostructures
- □ Our experimental setup : cluster system for PLD, *in-situ* ARPES, RHEED & LEED
- □ Basic Properties of SrRuO₃
- 2. MIT in SrRuO₃ ultrathin films
 - □ Fundamental thickness limit of SRO films
 - □ Control of MIT in 2D SRO films (i.e. 1 *u.c*) by controlling the titling angle
 - □ Strain Engineering of electronic properties of 2D SRO films
- 3. Dual ferromagnetism in $SrRuO_3$ thick films
- 4. Topological band structures of SrRuO₃ : Nodal features
- 5. Summary and Outlooks

How to discover & control novel emergent phenomena in TMO and their heterostructures?

Perovskite Oxides (ABO₃)

o Oxygen

Emergent phenomena

- Ferroelectricity
- Ferroelasticity
- High-k dielectric
- Multiferroicity
- Flexoelectricity
- Magnetism
- Metal-insulator transition
- Correlated topological phases
- (Novel) Superconductors
- Resistance change, TER
- CMR, TMR, and GMR 2DEG
- Thermoelectric
- *BO*₆ octahedra form a connecting network in 3D
- Filling of *d* electrons in *B* ions \rightarrow emergent phenomena

Important interactions in transition metal oxides

Electronic correlations : On-site Coulomb interaction (*U*)

& Hund's rule coupling (*J*)

Topological effects : Spin-orbit coupling interaction (SOC)

	11 3 12 NaPart	ially	Rydberg cor	d <i>d</i> -c	orbita	als ir	τN	* 10 :	corr	elati	on r	hvs	14 iCS	14.5341 15 's ₃₀ P	13.6181 16 ³ P, S			
	Sodium Magnesiu 22.98976928 24.3050 [Ne]3s [Ne]3s ² 5.1391 7.6462	3 IIIB	4 IVB	5 VB	6 VIB	7 VIIB	8	9 — VIII —	10	11 IB	12 IIB	8	Silicon 28.085* [Ne]3s ² 3p ² 8.1517					
	K3d	S 21 D ₃₀ Scandium 44.955912 [Ar]3d4s ² 6.5615	2 22 ³ F ₂ Ti Titanium 47.867 [Ar]3d ² 4s ² 8.8281	23 °F ₃₂ V Vanadium 50.9415 [Ar]3d ³ 4s ² 6 7462	24 'S ₃ Cr Chromium 51.9961 [Ar]3d ⁵ 4s 8.7865	25 °S _{5/2} Mn Manganese 54.938045 [Ar]3d ⁵ 4s ² 7.4340	26 ⁵ D ₄ Fe ^{1ron} 55.845 [Ar]3d ⁶ 4s ² 7.9025	27 ⁴ F _{9/2} Co Cobalt 58.933195 [Ar]3d ⁷ 4s ² 7.8810	28 ³ F ₄ Nickel 58.6934 [Ar]3d ⁸ 45 ² 7.6399	29 ² S _{1/2} Cu Copper 63.546 [Ar]3d ¹⁰ 4s 7.7264	30 ¹ S ₀ Zn ^{Zinc} ^{65.38} [Ar]3d ¹⁰ 4s ² 9.3942	31 ² P ⁶ _{1/2} Gallium 69.723 [A/Bd ¹⁰ 4s ² 4p 5 0002	U, t	33 'S'37 As 74.92160 (Ar[30 ¹⁶ 43'49	Mott	ness		
	37 38 R'4 <i>d</i> St Ruta de St Ruta d	S 39 ² D ₃ Yttrium 88.90585 [Kr)4d5s ²	2 40 ³ F ₂ Ztr Zirconium 91.224 [Kr]4d ² 5s ²	41 ⁶ D _{1/2} Niobium 92.90638 [Kr}4d ⁵ 5s	42 ⁷ S ₃ Mo Molybdenum 95.96 [Kr]4d ⁵ 5s	43 ⁶ S _{5/2} Tc Technetium (98) [Kr]4d ⁵ 5s ²	44 ⁵ F ₅ Ru Ruthenium 101.07 [Kr]4d ⁷ 5s	45 4F 4F 47 47 47 47 47 47 47 47 47 47 47 47 47	46 1S0 Palladium 106.42 [Kr]4d ¹⁰	47 ² S _{1/2} Ag Silver 107.8682 [Kr]4d ¹⁰ 5s	48 ¹ S ₀ Cd Cadmium 112.411 [Kr]4d ¹⁹ 5s ²	49 ² P ₁₂ In Indium 114.818 [Xi)4d ¹⁰ 5s ² 5p	$U, t \rightarrow$	~ J Moti	52 Te ness	& Hı	undno	ess
	55 5d Ba	6.21/3	72 ³ F ₂ Hafnium 178.49 [Xe]4t ¹⁴ 5d ² 6s ² 6.8251	73 ⁴ F _{3/2} Ta Tantalum 180.94788 (Xe)41 ⁴⁵ d ³ 6s ² 7.5496	7.0924 74 ⁵ D ₀ W Tungsten 183.84 [Xe]4f ¹⁴ 5d ⁴ 6s ² 7.8640	75 ⁶ S _{5/2} Re Rhenium 186.207 [Xe]4f ⁴⁵ d ⁵ 6s ² 7.8335	7.5605 76 ⁵ D ₄ Osmium 190.23 [Xe)4t ¹⁴ 5d ⁶ 6s ² 8.4382	77 ⁴ F _{9/2} Ir Indium 192.217 [Xe]41 ¹⁴ 5d ⁷ 6s ² 8.9670	78 ³ D ₃ Pt Platinum 195.084 [Xe]4f ¹⁴ 5d ⁹ 6s 8.9588	79 ² S _{1/2} Au Gold 196.966569 [Xe]4t ¹⁴ 5d ¹⁰ 6s 9.2256	80 ¹ S ₀ Hg Mercury 200.59 [Xe]41 ⁴⁵ d ¹⁰ 6s 10.4375	81 ² P [*] ₁₂ Tl Thallium 204.38* [Hg]8p 6.1083	U, t →	- Jef top	$f = \frac{1}{2}$	SOC state	s*, prope	rties
	87 'S ₁₂ 88 '		Rutherfordium	Dubrium	Seaborgium	Bohrium	Hassium	Mt Meitnerium	Damstadium	Roentgenium	Coperticium	Unut Ununtrium	Fl	Ununpentium	110 Lv Livermorium	Ununseptium	Ununoctium	
* B. J. Kim et al., <i>Phys. Rev. Lett.</i> (2008)													g inte	integral ~ bandwidth)				

TMO heterostructures : a platform for searching novel EP

Novel emergent phenomena (EP) **Design of artificial Transition Metal Oxides** from TMO heterostructures (TMOs) heterostructure Controlling Charge degrees of freedom Charge Insulator Lattice Orbital 0 Semiconducto Superconductor Spin Ferroelectric Ferromagnetic Lattice Multiferroic **Orbital** Dimension Dimension Spin Spin-Orbit coupling

J. M. Rondinelli *et al*, *MRS Bulletin*. (2012).
E. Dagotto *et al.*, *Science* (2007)
H. Y. Hwang *et al.*, *Nat. Mater.* (2012)

Content

1. Introduction

- □ Emergent phenomena in transition metal oxides and their heterostructures
- Our experimental setup : cluster system for PLD, *in-situ* ARPES, RHEED & LEED
- □ Basic Properties of SrRuO₃
- 2. MIT in SrRuO₃ ultrathin films
 - □ Fundamental thickness limit of SRO films
 - □ Control of MIT in 2D SRO films (i.e. 1 *u.c*) by controlling the titling angle
 - □ Strain Engineering of electronic properties of 2D SRO films
- 3. Dual ferromagnetism in $SrRuO_3$ thick films
- 4. Topological band structures of SrRuO₃ : Nodal features
- 5. Summary and Outlooks

Difficulties on transport measurements of ultrathin TMO films

□ Conducting channel broken near the step-edge of substrates

Metal to insulator transition (MIT) in approaching the single atomic layer limit
 : correlation-driven Mott insulating phases or localization effects

Inevitable broken channels near step edge!

→ difficult to measure transport properties

M. G. Lagally and Z. Zhang, Nature (2022)

Cluster system for studying electronic structure of TMO films

Pulsed Laser Deposition

in-situ Angle-resolved Photoemission Spectroscopy

Cluster system for *in-situ* **ARPES**

In-situ AREPS, *In-situ s*pin-resolved ARPES : measure average of local area responses

 \rightarrow can characterize the electronic structures of the ultrathin films

Energy Resolution: 6 meV

Growth of high-quality SrRuO₃ film growth

PLD growth

Step flow mode

J. Choi et al., Appl. Phys. Lett. (2001)

RHEED

Via the step-flow growth mode of SRO films, we can grow very high-quality SRO films with atomic smoothness.

L. Wang et al., Nano Lett. (2020)

In-situ ARPES results on SRO thin-films

PLD @SNU

B. Sohn, C. Kim et. al., Nature Materials (2021)

Content

1. Introduction

- □ Emergent phenomena in transition metal oxides and their heterostructures
- □ Our experimental setup : cluster system for PLD, *in-situ* ARPES, RHEED & LEED
- □ Basic Properties of SrRuO₃
- 2. MIT in SrRuO₃ ultrathin films
 - □ Fundamental thickness limit of SRO films
 - □ Control of MIT in 2D SRO films (i.e. 1 *u.c*) by controlling the titling angle
 - □ Strain Engineering of electronic properties of 2D SRO films
- 3. Dual ferromagnetism in $SrRuO_3$ thick films
- 4. Topological band structures of SrRuO₃ : Nodal features
- 5. Summary and Outlooks

Material platforms of searching for CTPs : Ruthenates

Electronic correlations : On-site Coulomb interaction (*U*)

& Hund's rule coupling (*J*)

Topology : Spin-orbit coupling interaction (SOC)

SrRuO₃ : structural properties

Orthorhombic (*Pnma*) structure with oxygen octahedral rotation (OOR):
 tilting (φ) and rotation (θ):

□ In the Glazer notation, $\frac{a^{-}a^{-}c^{+}}{a^{-}a^{-}c^{+}}$ rotation of RuO₆ octahedra (at RT)

 \Box Ru⁴⁺ ion has 4 electrons in the t_{2g} bands (*xy*, *yz*, & *zx* orbitals).

J. Okamoto, M. Takano et al., Phys. Rev. B (1999)

Basic Properties of SrRuO₃: Metallic Ferromagnet

- \Box Highly metallic \rightarrow widely used as electrode materials in oxide electronics
- □ Metallic & FM \rightarrow Stoner mechanism?
- □ Correlations due to $J \sim 0.5 \text{ eV}$: orbital degeneracy effects \rightarrow Hund's metal ?
- □ Anomalous Hall effects (AHE), due to the Berry curvature
- □ SrRuO₃ single crystals : hardly available \rightarrow high quality thin films useful !!

Superconductivity in Sr₂RuO₄

- 2D layer-perovskite structure
- Superconductivity at ~ 1.5 K
- A candidate of *p*-wave superconductor ?
- Similarly to 1 *uc* SrRuO₃ film (i.e. SRO in 2D limit)?

Y. Maeno *et al.*, Nature **372**, 532 (1994)

Electronic Structure of a SrRuO₃ ultrathin film : Fermi surface

 γ : d_{xy} orbital (2D-character) α , β : d_{xz,yz} orbitals (1D-character)

B. Sohn, TWN, C. Kim et. al., Nature Materials (2021)

Substitution effects in Ca_{2-x}Sr_xRuO₄

Octahedron rotation & tilt

With Ca-substitution,

- RuO₆ tilting & rotation
- filling change of *d*-orbitals
- metal-insulator transition
- a very rich phase diagram

Content

1. Introduction

- □ Emergent phenomena in transition metal oxides and their heterostructures
- □ Our experimental setup : cluster system for PLD, *in-situ* ARPES, RHEED & LEED
- □ Basic Properties of SrRuO₃
- 2. MIT in SrRuO₃ ultrathin films
 - Fundamental thickness limit of SRO films
 - □ Control of MIT in 2D SRO films (i.e. 1 *u.c*) by controlling the titling angle
 - □ Strain Engineering of electronic properties of 2D SRO films
- 3. Dual ferromagnetism in $SrRuO_3$ thick films
- 4. Topological band structures of SrRuO₃ : Nodal features
- 5. Summary and Outlooks

Thickness-dependent MIT of SRO films : previous studies

Question: At which thickness, does MIT occur in SRO films?

T_c ~ 4 u.c.

Disorder in rough SrRuO₃ films

- M. Izumi et al., JPSJ (1998)
- D. Toyota et al., APL (2005)
 - J. Xia et al., PRB (2009)
- S. Kang et al., PRB (2019)
 - H. Jeong APL (2019)

S. G. Jeong, and W. S. Choi et al., PRL (2020)

Fundamental thickness of SrRuO₃ ultrathin films

- Our previous study of SRO films

Y. J. Chang, et. al., PRL (2009)

In 2009, we observed film thickness limits for metallicity and ferromagnetism.

Metallicity : 1 u.c. FM : 3 u.c.

Fundamental thickness of SrRuO₃ ultrathin films

- Orbital-selective quantum confinement effects (DFT)

Y. J. Chang, et. al., Phys. Rev. Lett. (2009)

Fundamental thickness of SrRuO₃ ultrathin films

- Controversy on metallicity

Monolayer SRO is a metal

Para- or ferro-magnetic metallic ground state

(a) _{1 uc} (b) Nonmagnetic (c) 1 uc (e) Magnetic 1 uc S Tio 1 uc S 2 uc S 2 uc S 3 uc S-1 3 uc S-1 4 uc S-1 4 uc S-1 -1 0 4 uc Energy (eV) Energy (eV)

Y. J. Chang, et al., Phys. Rev. Lett. 103, 057201 (2009)

Monolayer SRO is an insulator

D. Toyota *et al., APL* (2005) M. Izumi *et al., JPSJ* (1998)

Transport and magnetic measurements of ultra-thin films are quite difficult... → in-situ ARPES can be useful

VS

Our first ARPES on 2 u. c. SRO films

2 uc SRO film insulating in transport measurements

No band dispersion observed for 2 u.c. films

Are atomically-thin SRO films intrinsic insulators? Or Charging effects ?

Electronic Structure of a SrRuO₃ film : Fermi surface

Octahedron distortions in bulk Ca_{2-x}Sr_xRuO₄

Challenging Task: Can we control octahedron distortion in 1 u. c. SrRuO₃ films?

- Control of electronic states by octahedron distortion

CTO: a⁻b⁺a⁻

- Metallic edge
- Cubic SrTiO₃ buffer layer
- STO: a⁰b⁰a⁰

- Structural proximity effects using n-(SRO)_n/10-ATiO₃/4-SRO/STO

- STEM-EELS studies : chemical composition

Center for Correlated Electron Systems

B. Sohn, J. R. Kim, TWN, C. Kim et. al., Nat. Commun. (2021)

- LEED : surface reconstruction

SRO crystal structure changes with buffer layers.

- Angle-averaged PES

MIT can occur in 1 u.c. SRO film, depending on symmetry of SRO !

Structural control of electronic phases in SRO ultrathin films

- Emergence of 3 electronic phases

What is the nature of the inherent metallic state with small quasiparticle weight *Z*?

- Hund's metal?

J. R. Kim, TWN, C. Kim et. al., Advanced. Maters (2023)

The Hund's Rules for multiorbital systems

- 1. Total spin S should be maximized
- 2. Total angular momentum *L* should be maximized

For example, in 3-orbital (degenerate) t_{2g} system

A. Georges et al., Annu. Rev. Condens. Matter Phys. (2013).

MIT in multiorbital systems

Hund's coupling (*J*) plays the main role in determining electronic properties.
 The role of *J* varies depending on the number of orbitals and filling number.

Hund's coupling polarizes the spin locally, which makes a small overlap between the noninteracting and spin-polarized atomic states. Thus Z becomes suppressed, in concomitant with an enhancement of the spin fluctuations. \rightarrow the Hund's metal. - R. H. Mckenzie

A. Georges et al., Annu. Rev. Condens. Matter Phys. (2013).

MIT in numerous multi-orbital systems

- MIT strongly depends on electron filling (Ambivalence of *J*).
- Near MIT, the Hund's metallic state can occur.

16 CEES Center for Correlated Electron Systems

A. Georges et al., Annu. Rev. Condens. Matter Phys. (2013).

Difficulty to reach the Hund's metal in 3D SrRuO₃

- By controlling the *U* and *J*, the multiple phases can be emerged in bulk SRO.
- However, the Hund's metal near the MIT is difficult to reach.

B. Sohn, J. R. Kim, TWN, C. Kim *et. al., Nat. Commun.* (2021) J. R. Kim, TWN, C. Kim *et. al., Advanced. Maters* (2023)

MIT in the 2D SRO film through the Hund's metal state

J. R. Kim, TWN, C. Kim et. al., Advanced. Maters (2023)

B. Sohn, J. R. Kim, TWN, C. Kim et. al., Nat. Commun. (2021)

MIT in 2D SRO film

- DFT calculations

Based on our DFT calculation,

- 2D SRO/BTO is a coherent metal.

- a strong incoherency between DFT and experiments for 2D SRO/STO and

SRO/CTO \rightarrow indicating presence of a strong electronic correlation.

MIT in 2D SRO film

- DMFT calculations

Content

1. Introduction

- □ Emergent phenomena in transition metal oxides and their heterostructures
- □ Our experimental setup : cluster system for PLD, *in-situ* ARPES, RHEED & LEED
- □ Basic Properties of SrRuO₃

2. MIT in SrRuO₃ ultrathin films

- □ Fundamental thickness limit of SRO films
- □ Control of MIT in 2D SRO films (i.e. 1 *u.c*) by controlling the titling angle
- □ Strain Engineering of electronic properties of 2D SRO films
- 3. Dual ferromagnetism in $SrRuO_3$ thick films
- 4. Topological band structures of SrRuO₃ : Nodal features
- 5. Summary and Outlooks

Revisit of octahedron distortions in Ca_{2-x}Sr_xRuO₄

By changing the θ and ϕ , the crystal field splitting can be changed.

 \rightarrow changes in the occupation number

Octahedron rotation & tilt

H.-J. Noh et al, PRB (2005)

Tuning of the crystal field splitting in SrRuO₃

Experimental approaches using strain engineering.

- Difficulties in conventional strain engineering

Due to the proximity effects from substrate, the crystal structure of films will vary depending on the OOR of substrate. \rightarrow crystalline symmetry breaking !

 \rightarrow How to change lattice constants of the ultrathin films on different substrates with various OOR ?

E. K. Ko, C. Kim, TWN et. al., Nature Comm. (2023)

Strain engineering in SRO monolayer

- Symmetry preserving strain engineering

- 0.5 % + 0.2 % - 1.4 % + 1.7 % $Q_{\gamma}(2\pi/a)$ -2 0 2 0 2 -1 0 2 -1 0 2 -1 1 -2 -1 1 -2 1 -2 1 $Q_x(2\pi/a)$ $Q_x(2\pi/a)$ $Q_x(2\pi/a)$ $Q_{\rm v}(2\pi/a)$

The STO layer guarantees that all SRO layers on 5 different substrates will have the same crystal symmetry of the $a^0a^0c^-$ OOR pattern.

Structural characterization: STEM-HAADF

High-quality of SRO monolayers.

SRO monola STO Substrate (SA	yer GT)								2 <u>nm</u>
STO	1.1	۰.	•		÷.	22	÷.,		٠.
SRO mono	layer								
									0
STO								2 nm	
						腔			
\times	$\langle \rangle \rangle$	Ŷ							
	\times	\mathbf{X}					83		
	XX	X		9					

Strain engineering in SRO monolayer

- Symmetry-preserving epitaxial strain engineering

- By controlling the crystal field splitting by applying different in-plane strain, we can tune the associated band structure.
- In particular, the 2D SRO monolayer can exhibit MIT depending on different strain strength. → possibility of appearance of new phases

E. K. Ko, C. Kim, TWN et. al., Nature Comm. (2023)

Strain-dependent orbital occupancy changes

$(3-orbital/4-electron) \rightarrow (2-orbital/2-electron)$

Concurrent opening of two types of gap

Content

1. Introduction

- □ Emergent phenomena in transition metal oxides and their heterostructures
- Our experimental setup : cluster system for PLD, *in-situ* ARPES, RHEED & LEED
- □ Basic Properties of SrRuO₃
- 2. MIT in SrRuO₃ ultrathin films
 - □ Fundamental thickness limit of SRO films
 - □ Control of MIT in 2D SRO films (i.e. 1 *u.c*) by controlling the titling angle
 - □ Strain Engineering of electronic properties of 2D SRO films
- 3. Dual ferromagnetism in SrRuO₃ thick films
- 4. Topological band structures of SrRuO₃ : Nodal features
- 5. Summary and Outlooks

Itinerant vs local ferromagnetism in SRO

Non-integer magnetic moment

e_g t_{2g} t_{2g} t_{2g} (3↑,1↓)

S = 2 expected in the local picture

Measured magnetic moment of ~1.6 μ_{B}

Temperature independent band splitting

Phys. Rev. Lett. 110, 087004 (2013)

Spectroscopic signature of the magnetism?

Stoner theory for ferromagnetic metals

Origin of ferromagnetism in SRO: Stoner Ferromagnetism ?

ARPES : FM feature near E_F

Observation of spin-polarized bands in ferromagnetic SrRuO₃ films

Localized FM feature at high energy

High energy electrons are strongly spin-polarized.

Dual character !!! High energy electrons has a local spin character!

Spin-dependent correlation

Difference in coherence

L Experiment Calculation X Sinding energy (meV) 0 Company of the second s 100 -200 $eta_{\scriptscriptstyle maj}$ 0.8 1.2 0.8 1.2 $\boldsymbol{k}_{\!\scriptscriptstyle \parallel}(\mathrm{\AA}^{-1})$

Broad majority and sharp minority bands

Spin-dep Coulomb interaction $(Un_{\uparrow}n_{\downarrow})$

Wide interaction channel : strong correlation for majority Narrow interaction channel : weak correlation for minority

Localized spin majority electrons & itinerant spin minority electrons

Ferromagnetism in SrRuO₃ film : ARPES studies

S. Hahn, TWN, C. Kim et. al., Phys. Rev. Lett. (2021)

Pictorial illustrations

- We observed spin-dependent electronic structure and dual ferromagnetism in thick SRO film.
- Below T_c, the majority and minority spin bands can have a large spin-split gap.
 → Ferromagnetic phase.
- Above T_c, the two spin bands become more incoherent and cannot be distinguished.
 → Paramagnetic phase.

Content

1. Introduction

- □ Emergent phenomena in transition metal oxides and their heterostructures
- □ Our experimental setup : cluster system for PLD, *in-situ* ARPES, RHEED & LEED
- □ Basic Properties of SrRuO₃
- 2. MIT in SrRuO₃ ultrathin films
 - □ Fundamental thickness limit of SRO films
 - □ Control of MIT in 2D SRO films (i.e. 1 *u.c*) by controlling the titling angle
 - □ Strain Engineering of electronic properties of 2D SRO films
- 3. Dual ferromagnetism in $SrRuO_3$ thick films
- 4. Topological band structures of SrRuO₃ : Nodal features
- 5. Summary and Outlooks

Anomalous Hall effects of SrRuO₃

- Anomalous Hall effects (AHE) in SrRuO₃, due to the Berry curvature.
- However, the related electronic structure has not be reported experimentally.

Z. Fang et al., Science (2003).

Magnetic monopoles in *k*-space of SrRuO₃

Anomalous Hall effect (AHE) & magnetic monopoles in k-space

Ferromagnetic spin structure in r-space → magnetic monopoles in k-space : experimentally observed in 3D magnetic metals with Weyl points & Fe₃GeTe₂ (with NLs of 3D spin-polar. band)

However, not experimentally confirmed in SrRuO₃ yet.

Z. Fang, N. Nagaosa, et. al., Science (2003)

Magnetic monopoles in SRO?

topological transport in itinerant FM ← Magnetism & SOC

- (1) spin-polarized bands with nodal points/lines
- & (2) band degeneracy can be lifted by SOC
- \rightarrow A source of Berry curvature, leading to a large AHE

It was theoretically predicted that 2D spin polarized bands of perovskite oxides generally can support symmetry protected nodal lines and points \rightarrow AHE

Electronic Structure of a SrRuO₃ ultrathin film

Spin polarization in 4 u.c. SRO film

- Clear polarization below T_c was observed in spin-resolved ARPES
 → consistent with itinerant FM.
- We also observed band dispersion in SARPES → Origin?

B. Sohn, TWN, C. Kim *et. al.*, Nature Materials (2021)

2D symmetry-protected nodal structures in ferromagnetic films

2D FM perovskite of t_{2g} system can possess stable nodal structures :

(i.e. nodal lines (NL) & quadratic band crossing (QBC)

with crystal and rotational symmetry, protecting topological features.

B. Sohn, TWN, C. Kim et. al., Nat. Mater. (2021)

Sign changes in AHE: Berry curvature due to Nodal structure

0.0 (0.0 (0.0 (0.0 (0.0 (0.0 (0.0 (0.0 (0.0 (0.0 (0.0) (0.0 (0.0)

Berry curvature sources

- (1) Nodal lines (β γ band crossing)
- 2 Quadratic band crossing at M

- Different sign of BC near E_F
- BC mostly from QBC in 2D FM perovskite

Quadratic band crossing (QBC) near the M point mainly responsible for the AHE.

The sign of AHE can change as the magnetization (or Fermi energy) is varied due to Berry curvature near the Fermi level induced by the nodal structures.

Content

1. Introduction

- □ Emergent phenomena in transition metal oxides and their heterostructures
- Our experimental setup : cluster system for PLD, *in-situ* ARPES, RHEED & LEED
- □ Basic Properties of SrRuO₃
- 2. MIT in SrRuO₃ ultrathin films
 - □ Fundamental thickness limit of SRO films
 - □ Control of MIT in 2D SRO films (i.e. 1 *u.c*) by controlling the titling angle
 - □ Strain Engineering of electronic properties of 2D SRO films
- 3. Dual ferromagnetism in $SrRuO_3$ thick films
- 4. Topological band structures of SrRuO₃ : Nodal features
- 5. Summary and Outlooks

Summary on SrRuO₃ thin film studies

- We recently built a cluster system with atomic-scale epitaxy and angle-resolved photoemission spectroscopy (ARPES) to unravel the physics of conducting TMO films. [B. Sohn et al, Nature Comm. 12 6171 (2021)]
- The fundamental thickness limit of SrRuO3 films on SrTiO3 substrates are 1 uc for metallicity and 3 uc for ferromagnetism, consistent with our earlier predictions. [Y. Chang et al., PRL 103(5), 057201 (2009)]
- In this 2D limit, we can manipulate a metal-insulator transition by controlling the rotation of the RuO₆ octahedron. We obtained some experimental indications of Hund's metallicity. [J.R. Kim et al., Adv. Mat. **35** 2208833 (2023)]
- We can split d_{xy} and d_{yz}/d_{zx} bands of 2D SrRuO₃ by changing crystal field splitting with the symmetry-preserved strain engineering technique. This tuning effectively changes the numbers of electrons and involved orbitals. We observed two types of gap opening: Band insulator and Mott gap near the MIT. [E. K. Ko et al., Nature Comm. 13 3572 (2023)]
- We also addressed the nature of ferromagnetism by using spin-resolved ARPES.
 [S. Hahn et al., Phys. Rev. Lett. 127 256401 (2021)] Lastly, we investigated symmetry-protected nodal structures in ferromagnetic SrRuO₃ films [B. Sohn et al, Nature Mater. 20 1643 (2021)].

Outlooks on transition metal oxides

- Transition metal oxides is a fertile ground for investigating novel emergent phenomena arising from the interplay between degrees of freedom.
- Numerous strong interactions, such as on-site Coulomb interaction (*U*), Hund's rule coupling (*J*), and or spin-orbit coupling (SOC).

- □ TMO for Emergent phenomena
- High- T_c superconductor in cuprate (1980s)
- Colossal magnetoresistance in magnates (1990s)
- Sr₂RuO₄ (*Science*. (1998), Prof. Maeno)
- SrRuO₃ (*Science*. (2003), Prof. Nagaosa)
- Sr₂IrO₄ (*Phys. Rev. Lett.* (2008), Prof. B. J. Kim)
- BaBiO₃ (*Nat. Phys.* (2013), Prof. C. Felser)
- [SrlrO₃/SrRuO₃]_n (*Sci. Adv.* (2016). Prof. J. Matsuno)
- Nd₂Ir₂O₇ (*Sci. Adv.* (2021), Prof. T. W. Noh)

.

Y. Tokura et al., Nat. Phys. (2017)

Ultrathin TMO film platforms

• Tailor the electronic structures via **symmetry breaking**: wide range of **tunability** available in **ultrathin films and heterostructures**.

Dimensionality

Ultrathin film (monolayer) 2-D limit

Epitaxial strain

Substrate-induced strain.

Proximity effect at the interface

Symmetry-breaking ferromagnetic, ferro electric layers as substrates.

Acknowledgement: IBS-CCES in SNU

Thin-film growth

Prof. Woojin Kim (Pusan National Univ.)
Dr. Jung Rae Kim (Calthech)
Dr. E. Ko (Stanford)
Dr. Jinkwon Kim (Cornell)
Dr. Jaeseok Son (Samsung Electronics)
Dr. Jihye Lee (Advanced Institue of Convergence Technology)
Dr. Chang Jae Roh (Univ. of Geneva)
Dr. Jeongkeun Song (IBS-CCES)
Jihwan Jeong (SNU)

ARPES

Prof. Byungmin Sohn (Sungkyunkwan Univ.) Dr. Sungsoo Hahn (IBS-CCES) Youngdo Kim (IBS-CCES) Donghan Kim (IBS-CCES) Prof. Changyoug Kim (IBS-CCES)

STEM (Dept. of MSE in SNU)

Prof. Miyoung Kim, Dr. Junsik Mun (BNL), Dr. Sangmin Lee, Yunyeong Chang

Theory (IBS-CCES)

Prof. Bohm-Jung Yang, Dr. Choong Hyun Kim Eunwoo Lee, Se Young Park, Minjae Kim, Jihoon Shim

Atomic Scale Epitaxy group (early 2020)

Thank you very much! (~ 33 years in SNU)

