International School of Oxide Electronics

Introduction to group theory

From an experimentalist's perspective... R

Mael Guennou

University of Luxembourg

mael.guennou@uni.lu

The primitive unit cell of orthorhombic perovskite (Pnma), has four formula units ABO_{3} (in total 20 atoms), giving 60 Γ-point vibrational modes. Factor group analysis yields to the following modes:

$$
\begin{align*}
\Gamma_{(\text {Pnma })}= & 8 A_{u}+10 B_{1 u}+8 B_{2 u}+10 B_{3 u}+7 A_{g}+5 B_{1 g} \\
& +7 B_{2 g}+5 B_{3 g} \tag{3}
\end{align*}
$$

where $7 A_{g}+5 B_{1 g}+7 B_{2 g}+5 \mathrm{~B}_{3 g}$, a total of 24 modes, are Raman active (Zheng et al. 2004).

Example 1: Application to BaTiO_{3}
Freezing in the Γ_{4} polar instability: θ : $=209 \mathrm{~cm}^{-1}$

Instability at 「 triply degenerated: $\left|\xi_{x}\right\rangle,\left|\xi_{y}\right\rangle,\left|\xi_{z}\right\rangle$

Polar instability: mode effective charge $\bar{Z}=9.2$ (infrared active mode)

Disclaimers

- (almost no) equation
- (way too much) text
- (almost no) mathematical rigour

Molecular and crystal symmetry

Symmetry operations and notations

Rotations

- Noted n or C_{n} for a rotation by $2 \pi / n$
- Always anti-clockwise

Mirror planes

- Noted m_{u} or σ_{u}, u being a normal to the plane

Inversion center

- Noted -1 or i
- For a molecule:
- Always at the origin, when it exists
- Unique or non-existant

Molecular and crystal symmetry

 LUXEMBOURG
Symmetry operations and notations for molecules

Improper rotations or rotoinversion

- Combination of a rotation + inversion
- Noted $-n$, or S_{n} for a rotation by $2 \pi / n$
- May leave a molecule invariant even if the rotation and inversion alone do not

Molecular and crystal symmetry

Additional symmetry elements for crystals:

- Translations by lattice vectors
- Skrew axis: Combination of a rotation and a translation along the rotation axis by a fraction of a lattice vector.
- Glide planes: Combination of a mirror symmetry with a translation parallel to the mirror plane by a fraction of a lattice vector

Molecular and crystal symmetry

Definition of a group

A group is a set, G, together with an operation " 0 " that combines any two elements a and b to form another element, denoted $a \circ b$ or $a b$, such that the following conditions are satisfied:

1. Closure:

The combination of two elements of a group must give an element of a group
2. Identity element:

There exists one element of the group such that $a \circ E=E \circ a=a$

3. Associativity:

The combination of two group elements is associative $A \circ(B \circ C)=(A \circ B) \circ C$
4. Inverse:

Every element has its inverse element (also element of the group).

$$
\mathrm{A} \circ \mathrm{~A}^{-1}=\mathrm{A}^{-1} \circ \mathrm{~A}=E
$$

The set of symmetry elements leaving a molecule or a crystal physically invariant forms a group.

Molecular and crystal symmetry

UNIVERSITÉ DU
LUXEMBOURG

For crystal symmetry:

- Rotations are limited to 2,3,4 and 6 by the crystallographic restriction theorem
- 32 crystallographic point groups (+ magnetism $\rightarrow 122$)
- 230 crystallographic space groups (+ magnetism \rightarrow 1651)

For molecular symmetry: no particular restrictions in theory...

- crystallographic point groups
- + point groups for linear molecules
- + point groups for permitted rotation invariance (5-fold, 8-fold etc.)
- + Full rotation symmetry for isolated atoms

acetylene $\mathrm{C}_{2} \mathrm{H}_{2}$

sulfur S_{8}

Molecular and crystal symmetry

Notion of « site symmetry »

Definition

Site symmetry of an atom $A=$ set of symmetry operations that leave this particular atomic position unchanged

Properties

The site symmetry is described by point group, and is a subgroup of the group of the crystal or molecule.

Can be found by manual inspection, or in the international tables of crystallography.

Positions					
Multiplicity, Wyckoff letter, Site symmetry		Coordinates			
$8 d$		(5) $\bar{x}, \bar{y}, \bar{z}$		$y, \bar{z}+\frac{1}{2}$	(7) x, \bar{y}
$4 \quad c$. m	$x, \frac{1}{4}, z$	$\bar{x}+\frac{1}{2}, \frac{3}{4}$		
$4 \quad b$	$\overline{1}$	0,0, $\frac{1}{2}$	$\frac{1}{2}, 0,0$	0, $\frac{1}{2}, \frac{1}{2}$	$\frac{1}{2}, \frac{1}{2}, 0$
$4 \quad a$	$\overline{1}$	0,0,0	$\frac{1}{2}, 0, \frac{1}{2}$	0, $\frac{1}{2}, 0$	$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$

Classification and notations

For point groups

Schoenflies notation:

suitable for point groups, molecules \rightarrow used in spectroscopy, chemistry...
Hermann-Mauguin notation (International notation):
suitable for point groups and space groups \rightarrow used in physics, crystallography...

Notations for the 32 crystallographic point groups

	Triclinic		Monoclinic				Orthorhombic			Tetragonal							
Schoenflies	C_{1}	C_{i}	C_{2}	C_{s}	$\mathrm{C}_{2 \mathrm{~h}}$		D_{2}	$\mathrm{C}_{2 \mathrm{v}}$	$\mathrm{D}_{2 \mathrm{~h}}$	C_{4}	S_{4}	$\mathrm{C}_{4 \mathrm{~h}}$	D_{4}	$\mathrm{C}_{4 \mathrm{v}}$	$\mathrm{D}_{2 \mathrm{~d}}$		4h
Hermann- Mauguin	1	$\overline{1}$	2	m	$2 / m$		222	$m m 2$	mmm	4	$\overline{4}$	4/m	422	4 mm	$\overline{4} 2 m$		mm
	Trigonal					Hexagonal							Cubic				
Schoenflies	C_{3}	$\mathrm{C}_{3 i}$	D_{3}	$\mathrm{C}_{3 \mathrm{v}}$	$\mathrm{D}_{3 \mathrm{~d}}$	C_{6}	$\mathrm{C}_{3 \mathrm{~h}}$	$\mathrm{C}_{6 \mathrm{~h}}$	D_{6}	$\mathrm{C}_{6 v}$	$\mathrm{D}_{3 \mathrm{~h}}$	$\mathrm{D}_{6 \mathrm{~h}}$	T	T_{h}	0	T_{d}	O_{h}
Hermann- Mauguin	3	$\overline{3}$	32	$3 m$	$\overline{3} m$	6	$\overline{6}$	6/m	622	6 mm	$\overline{6} m 2$	6/mmm	23	$m \overline{3}$	432	$\overline{4} 3 m$	$m \overline{3} m$

Classification and notations

 LUXEMBOURGC_{n} (for "cyclic") has an n-fold rotation axis.
$C_{n h}$ (h for "horizontal") is $C_{n}+$ a mirror plane perpendicular to the axis of rotation.
$C_{n v}\left(v\right.$ for "vertical") is $C_{n}+n$ mirror planes containing the axis of rotation.
$S_{2 n}$ (for "Spiegel") contains only a $2 n$-fold rotation-reflection axis.
$C_{n i}$ has only a rotoinversion axis. Redundant for $n>1$ but sometimes used.
D_{n} (for "dihedral", or two-sided) has an n-fold rotation axis plus n twofold axes perpendicular to that axis.
$D_{n h}$ is $D_{n}+$ a horizontal mirror plane and, as a consequence, also n vertical mirror planes each containing the n-fold axis and one of the twofold axes.
$D_{n d}\left(d\right.$ for "diagonal") is $D_{n}+n$ vertical mirror planes which pass between twofold axes (diagonal planes).

Classification and notations

 LUXEMBOURGT (for "tetrahedral") has the rotation axes of a tetrahedron.
T_{d} (d for "diagonal") includes diagonal mirror planes.
T_{h} (h for "horizontal") includes three horizontal mirror planes. Each plane contains two twofold axes and is perpendicular to the third twofold axis, which results in inversion center i.

O (for "octahedral") has the rotation axes of an octahedron or cube (three 4fold axes, four 3-fold axes, and 6 diagonal 2-fold axes).
O_{h} (h for "horizontal"): includes horizontal mirror planes and, as a consequence, vertical mirror planes. It contains also inversion center and improper rotation operations.

Classification and notations

Classification and notations

Crystallographic point groups (32)

Piezoelectric (20)		Non piezoelectric
Polar / pyroelectric (10)	Non polar	
$1,2, \mathrm{~m}, \mathrm{~mm} 2,4,4 \mathrm{~mm}, 3,3 \mathrm{~m}$, $6,6 \mathrm{~mm}$	$222,-4,422,-42 \mathrm{~m}, 32,-6$, $622,-62 \mathrm{~m}, 23,43 \mathrm{~m}$.	$-1,2 / \mathrm{m}, \mathrm{mmm}, 4 / \mathrm{m}, 4 / \mathrm{mmm}$, $-3 \mathrm{~m}, \mathrm{~m}, 6 / \mathrm{mmm}, \mathrm{m}-3,432$, $-43 \mathrm{~m}, \mathrm{~m}-3 \mathrm{~m}$

Molecular and crystal symmetry

Additional symmetry elements for magnetism:

- Time inversion symmetry: 1'
- Its combinations with spatial symmetry operations: e.g. $m+1^{\prime}=m^{\prime}$

Molecular and crystal symmetry

Additional symmetry elements for magnetism:

- Time inversion symmetry: 1^{\prime}
- Its combinations with spatial symmetry operations: e.g. $m+1^{\prime}=m^{\prime}$

- $32+32+58$ «Shubnikov » point groups
- $230+230+1191$ magnetic space groups

Cristallographic groups:

- where 1' does not exist at all
- where 1' exists as a symmetry operation (and therefore combines with all other operations)
- where 1' does not exist alone but exists in combination with some spatial symmetry operations

Molecular and crystal symmetry

Magnetic Point Group Tables

bels are presented in the traditional notation - to see them in UNI notation click here)

Choose a magnetic point group from the next table

1.1.1	1	1.2 .2	$11{ }^{\prime}$	2.1.3	-1	2.2.4	-11'	2.3 .5	-1'	3.1 .6	2	3.2 .7	21^{\prime}	3.3 .8	2^{\prime}
4.1.9	m	4.2 .10	$m 1^{\prime}$	4.3.11	m^{\prime}	5.1 .12	2/m	5.2 .13	$2 / m 1{ }^{\prime}$	5.3.14	$2^{\prime} / m$	5.4.15	$2 / m^{\prime}$	5.5.16	$2^{\prime} / m^{\prime}$
6.1 .17	222	6.2 .18	2221'	6.3 .19	2'2'2	7.1 .20	mm2	7.2.21	mm21'	7.3 .22	m'm2'	7.4.23	m'm'2	8.1.24	mmm
8.2.25	mmm1'	8.3.26	m'mm	8.4.27	m'm'm	8.5.28	$m^{\prime} m^{\prime} m^{\prime}$	9.1.29	4	9.2 .30	41^{\prime}	\|9.3.31	4^{\prime}	10.1.32	-4
10.2.33	-41'	10.3.34	-4'	11.1.35	4/m	11.2.36	4/m1'	11.3.37	$4^{\prime} / m$	11.4 .38	$4 / m^{\prime}$	11.5.39	$4^{\prime} / m^{\prime}$	12.1.40	422
12.2.41	4221'	12.3.42	4'22'	12.4.43	42'2'	13.1.44	4 mm	13.2 .45	$4 \mathrm{mm1}{ }^{\prime}$	13.3 .46	4'm'm	13.4.47	$4 m^{\prime} m^{\prime}$	14.1.48	-42m
14.2.49	-42m1'	14.3 .50	-4'2'm	14.4.51	$-4 ' 2 m^{\prime}$	14.5.52	-42'm'	15.1.53	4/mmm	15.2.54	4/mmm1'	15.3 .55	4/m'mm	15.4.56	4'/mm'm
15.5 .57	4'm'm'm	15.6 .58	4/mm'm'	15.7 .59	$4 / m^{\prime} m^{\prime} m^{\prime}$	16.1.60	3	16.2.61	31^{\prime}	17.1.62	-3	17.2 .63	-31'	17.3 .64	-3^{\prime}
18.1.65	32	18.2 .66	321'	18.3 .67	32^{\prime}	\|19.1.68	$3 m$	19.2.69	$3 m 1{ }^{\prime}$	19.3.70	$3 m^{\prime}$	20.1.71	-3m	20.2.72	-3m1'
20.3 .73	-3'm	20.4.74	$-3 ' m$ '	20.5.75	$-3 m^{\prime}$	21.1.76	6	21.2.77	61^{\prime}	21.3 .78	6^{\prime}	22.1.79	-6	22.2 .80	-61'
22.3.81	-6'	23.1.82	$6 / m$	23.2 .83	$6 / m 1{ }^{\prime}$	23.3 .84	$6^{1} / \mathrm{m}$	23.4.85	$6 / m^{\prime}$	23.5 .86	$6^{\prime} / m^{\prime}$	24.1.87	622	24.2.88	6221 '
24.3.89	$6^{\prime 2} 2{ }^{\prime}$	24.4.90	$62^{\prime 2}$	25.1.91	6 mm	25.2.92	$6 \mathrm{~mm} 1^{\prime}$	25.3.93	$6^{\prime} \mathrm{mm}{ }^{\prime}$	25.4.94	$6 \mathrm{~m}^{\prime} \mathrm{m}^{\prime}$	26.1.95	-6m2	26.2.96	-6m21'
26.3 .97	-6'm'2	26.4.98	-6'm2'	26.5.99	-6m'2'	27.1.100	6/mmm	27.2.101	6/mmm1'	27.3.102	6/m'mm	27.4.103	$6^{\prime} / \mathrm{mmm}^{\prime}$	'27.5.104	6'/m'mm'
27.6.105	$6 / \mathrm{mm}^{\prime} \mathrm{m}^{\prime}$	27.7.106	$6 / m^{\prime} m^{\prime} m^{\prime}$	28.1.107	23	28.2 .108	231'	29.1.109	m-3	29.2.110	$m-31{ }^{\prime}$	29.3.111	$m^{\prime}-3^{\prime}$	30.1.112	432
30.2.113	4321'	30.3.114	4'32'	31.1.115	-43m	31.2.116	-43m1'	31.3.117	$-4^{\prime} 3 m^{\prime}$	32.1 .118	$m-3 m$	32.2.119	$m-3 m 1{ }^{\prime}$	32.3.120	$m^{\prime}-3 \mathrm{~m}$
32.4.121	$m-3 m^{\prime}$	32.5.122	$m^{\prime}-3 m^{\prime}$												

Molecular and crystal symmetry

Magnetic Point Group Tables of 2 '/m (\#5.3.14)

Number of elements of the group (order): $\mathbf{4}$ This group is centrosymmetric This group is not polar This group is not compatible with ferromagnetism

N	(x,y,z) form	matrix form	Seitz symbol
1	$\begin{gathered} \mathrm{x}, \mathrm{y}, \mathrm{z},+1 \\ \mathrm{~m}_{\mathrm{x}}, \mathrm{~m}_{\mathrm{y}}, \mathrm{~m}_{\mathrm{z}} \end{gathered}$	$\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$	1
2	$\left\lvert\, \begin{gathered} \mathrm{x},-\mathrm{y}, \mathrm{z},+1 \\ -\mathrm{m}_{\mathrm{x}}, \mathrm{~m}_{\mathrm{y}},-\mathrm{m}_{\mathrm{z}} \end{gathered}\right.$	$\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right)$	m_{y}
3	$\begin{gathered} -\mathrm{x}, \mathrm{y},-\mathrm{z},-1 \\ \mathrm{~m}_{\mathrm{x},}-\mathrm{m}_{\mathrm{y}}, \mathrm{~m}_{\mathrm{z}} \end{gathered}$	$\left(\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right)$	$2 y^{\prime}$
4	$\begin{gathered} -\mathrm{x},_{,}-\mathrm{y}_{\mathrm{y}}-\mathrm{z},-1 \\ -\mathrm{m}_{\mathrm{x}}-\mathrm{m}_{\mathrm{y}},-\mathrm{m}_{\mathrm{z}} \end{gathered}$	$\left(\begin{array}{ccc}-1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1\end{array}\right)$	-1'

Useful data about magnetic point group 2'/m

Symmetry operations of the group

Magnetic Point Group Tables of $\mathbf{2 '}^{\prime} / \mathbf{m ' ~}^{\prime}(\# 5.5 .16)$

Useful data about magnetic point group $\mathbf{2}^{\prime} / \mathbf{m}^{\prime}$

Number of elements of the group (order): $\mathbf{4}$
This group is centrosymmetric
This group is not polar
This group is compatible with ferromagnetism

Symmetry operations of the group

N	(x,y,z) form	matrix form	Seitz symbol
1	$\begin{gathered} \mathrm{x}, \mathrm{y}, \mathrm{z},+1 \\ \mathrm{~m}_{\mathrm{x}}, \mathrm{~m}_{\mathrm{y}}, \mathrm{~m}_{\mathrm{z}} \end{gathered}$	$\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$	1
2	$\begin{aligned} & -\mathrm{x},-\mathrm{y},-\mathrm{z},+1 \\ & \mathrm{~m}_{\mathrm{x}}, \mathrm{~m}_{\mathrm{y}}, \mathrm{~m}_{\mathrm{z}} \end{aligned}$	$\left(\begin{array}{ccc}-1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1\end{array}\right)$	-1
3	$\left\lvert\, \begin{gathered} -\mathrm{x}, \mathrm{y},-\mathrm{z},-1 \\ \mathrm{~m}_{\mathrm{x}},-\mathrm{m}_{\mathrm{y}}, \mathrm{~m}_{\mathrm{z}} \end{gathered}\right.$	$\left(\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right)$	$2 y^{\prime}$
4	$\begin{gathered} \mathrm{x},-\mathrm{y}, \mathrm{z},-1^{\mathrm{m}_{\mathrm{x}},-\mathrm{m}_{\mathrm{y}}, \mathrm{~m}_{\mathrm{z}}} \end{gathered}$	$\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right)^{\prime}$	$\mathrm{m}_{\mathrm{y}}{ }^{\prime}$

Molecular and crystal symmetry

Magnetic Point Group Tables of $\mathbf{2}^{\prime} / \mathrm{m}(\# 5.3 .14)$

Useful data about magnetic point group $2^{\prime} / \mathrm{m}$

Number of elements of the group (order): $\mathbf{4}$ This group is centrosymmetric

This group is not polar
This group is not compatible with ferromagnetism

Symmetry operations of the group

N	(x,y,z) form	matrix form	Seitz symbol
1	$\begin{gathered} \mathrm{x}, \mathrm{y}, \mathrm{z},+1 \\ \mathrm{~m}_{\mathrm{x}}, \mathrm{~m}_{\mathrm{y}}, \mathrm{~m}_{\mathrm{z}} \end{gathered}$	$\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$	1
2	$\left\|\begin{array}{c} x_{1}-y_{y},+1 \\ -m_{x}, m_{y^{\prime}}, m_{z} \end{array}\right\|$	$\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right)$	m_{y}
3	$\begin{gathered} -\mathrm{x}, \mathrm{y},-\mathrm{z},-1 \\ \mathrm{~m}_{\mathrm{x},}-\mathrm{m}_{\mathrm{y}}, \mathrm{~m}_{\mathrm{z}} \end{gathered}$	$\left(\begin{array}{cccc}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right)$	$2 y^{\prime}$
4	$\begin{gathered} -x_{1}-y_{1}-z_{,}-1 \\ -m_{x_{1}}-m_{y_{2}}-m_{z} \end{gathered}$	$\left(\begin{array}{ccc}-1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1\end{array}\right)$	-1'

But compatible with antiferromagnetic orders

Group theory and representations

Definition of a representation

Given a vector space V, a representation R of a group G is a group homorphism from G to $G L_{n}(V)$, i.e. a mapping

$$
\begin{aligned}
& \mathrm{G} \rightarrow \mathrm{GL}_{\mathrm{n}}(\mathrm{~V}) \\
& \mathrm{g}_{i} \rightarrow \mathrm{R}\left(\mathrm{~g}_{i}\right)
\end{aligned}
$$

where $R\left(g_{j}\right)$ is a square $n \times n$ matrix, such that

$$
R\left(g_{i} \cdot g_{j}\right)=R\left(g_{j}\right) \cdot R\left(g_{j}\right)
$$

n is the dimension of the representation.
The basis of a representation is the basis of V used to write its matrices. The characters of a representation are the traces of its matrices.

Common vector space V in condensed matter physics:

- Quantum states of electrons, nuclei...
- Atomic displacements for vibrations and phase transitions
- Tensor describing physical properties (polarization, magnetization, elastic constants etc.)

Group theory and representations

Definition of a representation

Given a vector space V, a representation R of a group G is a group homorphism from G to $\mathrm{GL}_{\mathrm{n}}(\mathrm{V})$, i.e. a mapping

$$
\begin{aligned}
& \mathrm{G} \rightarrow \mathrm{GL}_{\mathrm{n}}(\mathrm{~V}) \\
& \mathrm{g}_{i} \rightarrow \mathrm{R}\left(\mathrm{~g}_{\mathrm{i}}\right)
\end{aligned}
$$

where $R\left(g_{i}\right)$ is a square $n \times n$ matrix, such that

$$
R\left(g_{i} \cdot g_{j}\right)=R\left(g_{j}\right) \cdot R\left(g_{j}\right)
$$

Example for the mm2 point group

Group theory and representations

Example: the totally symmetric representation

$$
\begin{aligned}
& \mathrm{G} \rightarrow \mathrm{GL}_{1}(\mathrm{~V}) \\
& \mathrm{g}_{i} \rightarrow(1)
\end{aligned}
$$

1	2_{z}	m_{x}	m_{y}
1	1	1	1

- It always exists.
- All scalar properties transform like it (temperature, entropy etc).
- It is not « faithful».

Group theory and representations

 LUXEMBOURG
Reducible vs. irreducible representation

A representation is reducible if the vector space V can be decomposed into (proper) subspaces stable by all symmetry operations, i.e. all matrices can be written as:

If this is not possible, the representation is called irreducible (an « irrep »).

Group theory and representations

 LUXEMBOURGThe reducible representation can be reduced into a direct sum of irreducible representations (« irreps »):

A

1	2 z	m_{x}	m_{y}
A1	A ${ }_{22}$	- ${ }_{\text {Amx }}$	- ${ }_{\text {A }}$
-----1	-----1	-----1	- ${ }^{-\cdots-\cdots}$
${ }^{\text {c }}$	${ }_{-} \mathrm{C}_{22}$	$\mathrm{C}_{\text {cmx }}$	C----

$$
\begin{gathered}
R=A \oplus B \oplus C \\
\operatorname{dim}(R)=\operatorname{dim}(A)+\operatorname{dim}(B)+\operatorname{dim}(C) \\
X(R)=X(A)+X(B)+X(C)
\end{gathered}
$$

Group theory and representations

The « everything-works-nicely-for-us » theorems

- Maschke's theorem
- Schur's lemma
- Wonderful (or great) orthogonality theorem
- ...
- The irreps we need are known, tabulated and independant of a particular choice of basis.
- Every representation can be decomposed into a sum of irreps, and this decomposition is unique.
- All you need is the character tables.
- The irreps of a group gives you a tool to describe how things transform under all the symmetry operations of the group.

Group theory and representations

bilbao crystallographic server

Contact us	About us	Publications	How to cite th
Space-group symmetry			
Magnetic Symmetry and Applications			
Group-Subgroup Relations of Space Groups			
Representations and Applications			
Point and Space Croups			
REPRES	Space Gr	tions	
Representations PG	Irreducibl	of the crystallog	
Representations SG	Irreducibl	of the Space G	
Get_irreps	Irreps and	s in a space gro	
DIRPRO	Direct Prod	roup Irreducible	
CORREL	Correlatio	een the irreduci	-subgroup pair
POINT	Point Gro		
SITESYM	Site-symm	resentations of	
COMPATIBILITY RELATIONS	Compatib	een the irreduc	group
MECHANICAL REP.	Decompo	anical represen	

Group theory and representations

Character tables

Group theory and representations

Character tables

$\mathrm{C}_{2 \mathrm{v}}(\mathrm{mm} 2)$	$\#$	1	2_{z}	$\mathrm{~m}_{\mathrm{y}}$	m_{x}	functions
A_{1}	Γ_{1}	1	1	1	1	z, x^{2}, y^{2}, z^{2}
$\mathrm{~A}_{2}$	Γ_{3}	1	1	-1	-1	$x y, J_{z}$
$\mathrm{~B}_{1}$	Γ_{2}	1	-1	1	-1	$x, x z, \mathrm{~J}_{y}$
$\mathrm{~B}_{2}$	Γ_{4}	1	-1	-1	1	$y, y z, \mathrm{~J}_{x}$

Check the orthogonality of the irreps and characters...

Group theory and representations

Example: how polarisation transforms
2 mm point group

3-dimensional, reducible representation

Group theory and representations

Example: how polarisation transforms 2 mm point group

	1	2_{z}	m_{y}	m_{x}
P_{x}	\bigcirc	\otimes	\bigcirc	Θ
P_{y}	\rightarrow	\leftarrow	\leftarrow	\rightarrow
P_{z}	\uparrow	\uparrow	\uparrow	\uparrow

	1	2_{z}	m_{y}	m_{x}
P_{x}	1	-1	1	-1
P_{y}	1	-1	-1	1
P_{z}	1	1	1	1

Group theory and representations

Example: how polarisation transforms 2 mm point group

	1	2_{z}	m_{y}	m_{x}
P_{x}	1	-1	1	-1
P_{y}	1	-1	-1	1
P_{z}	1	1	1	1

$\mathrm{C}_{2 \mathrm{v}}(\mathrm{mm} 2)$	$\#$	1	2_{z}	$\mathrm{~m}_{\mathrm{y}}$	m_{x}	functions
A_{1}	Γ_{1}	1	1	1	1	z, x^{2}, y^{2}, z^{2}
$\mathrm{~A}_{2}$	Γ_{3}	1	1	-1	-1	$x y, \mathrm{~J}_{z}$
$\mathrm{~B}_{1}$	Γ_{2}	1	-1	1	-1	$x, x z, \mathrm{~J}_{y}$
$\mathrm{~B}_{2}$	Γ_{4}	1	-1	-1	1	$y, y z, \mathrm{~J}_{x}$

3-dimensional, reducible representation

Decomposition into $B_{1} \oplus B_{2} \oplus A_{1}$

Group theory and representations

Example: how polarisation transform 4 mm point group

	1	2_{z}	4_{z}	m_{x}	$m_{-x y}$
P_{x}	\bigcirc	\otimes	\rightarrow	\otimes	\rightarrow
P_{y}	\rightarrow	\leftarrow	\otimes	\rightarrow	\bigcirc
P_{z}	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow

	1	2 z	4 z	m_{x}	$\mathrm{m}_{-x y}$
P	$\left(\begin{array}{lll}1 & . & . \\ . & 1 & \cdot \\ . & . & 1\end{array}\right)$	$\left(\begin{array}{ccc}-1 & \cdot & \cdot \\ \cdot & -1 & \dot{1} \\ \cdot & \cdot & 1\end{array}\right)$	$\left(\begin{array}{ccc}. & -1 & \\ 1 & \vdots & \\ \cdot & . & 1\end{array}\right)$	$\left(\begin{array}{ccc}-1 & \cdot & \\ \cdot & 1 & \\ \cdot & . & 1\end{array}\right)$	$\left(\begin{array}{lll}. & 1 & \\ 1 & & \\ \cdots & . & 1\end{array}\right)$

3-dimensional, reducible representation

Group theory and representations

Example: how polarisation transform 4 mm point group

Character Table of the group $\mathrm{C}_{\mathbf{4 v}}(\mathbf{4 m m})^{*}$

| $\mathrm{C}_{4 \mathrm{v}}(4 \mathrm{~mm})$ | $\#$ | 1 | 2 | 4 | $\mathrm{~m}_{100}$ | $\mathrm{~m}_{1-10}$ | functions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mult. | - | 1 | 1 | 2 | 2 | 2 | . |
| $\mathrm{~A}_{1}$ | Γ_{1} | 1 | 1 | 1 | 1 | 1 | $\mathrm{z}^{2} \mathrm{x}^{2}+\mathrm{y}^{2}, \mathrm{z}^{2}$ |
| $\mathrm{~A}_{2}$ | Γ_{2} | 1 | 1 | 1 | -1 | -1 | $\mathrm{~J}_{\mathrm{z}}$ |
| B_{1} | Γ_{3} | 1 | 1 | -1 | 1 | -1 | $\mathrm{x}^{2}-\mathrm{y}^{2}$ |
| $\mathrm{~B}_{2}$ | Γ_{4} | 1 | 1 | -1 | -1 | 1 | xy |
| E | Γ_{5} | 2 | -2 | 0 | 0 | 0 | $(\mathrm{x}, \mathrm{y}),(\mathrm{xz}, \mathrm{yz}),\left(\mathrm{J}_{\mathrm{x}}, \mathrm{J}_{\mathrm{y}}\right)$ |

	1	2	$4{ }_{2}$	m_{x}	$\mathrm{m}_{-x y}$
P		$\left(\begin{array}{ccc}-1 & \\ -2 & 1 & \\ & & 1\end{array}\right)$	$\left(\begin{array}{ll}\mathrm{iO}^{-1} & \\ \cdots & \\ \cdots\end{array}\right)$	$\left(\begin{array}{ccc}-1 & \\ { }^{-1} 0 & 1 \\ \hdashline & & \\ \hdashline & & 1\end{array}\right)$	$\left(\begin{array}{ll}10^{1} & \\ 1\end{array}\right.$

Decomposition into $E \oplus A_{1}$

Group theory and representations

Example: how polarisation transform 4 mm point group

Character Table of the group $\mathrm{C}_{\mathbf{4 v}}(4 \mathrm{~mm})^{*}$

| $\mathrm{C}_{4 \mathrm{v}}(4 \mathrm{~mm})$ | $\#$ | 1 | 2 | 4 | $\mathrm{~m}_{100}$ | $\mathrm{~m}_{1-10}$ | functions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mult. | - | 1 | 1 | 2 | 2 | 2 | \cdot |
| $\mathrm{~A}_{1}$ | Γ_{1} | 1 | 1 | 1 | 1 | 1 | $\mathrm{z}, \mathrm{x}^{2}+\mathrm{y}^{2}, \mathrm{z}^{2}$ |
| $\mathrm{~A}_{2}$ | Γ_{2} | 1 | 1 | 1 | -1 | -1 | $\mathrm{~J}_{\mathrm{z}}$ |
| B_{1} | Γ_{3} | 1 | 1 | -1 | 1 | -1 | $\mathrm{x}^{2}-\mathrm{y}^{2}$ |
| $\mathrm{~B}_{2}$ | Γ_{4} | 1 | 1 | -1 | -1 | 1 | xy |
| E | Γ_{5} | 2 | -2 | 0 | 0 | 0 | $(\mathrm{x}, \mathrm{y}),(\mathrm{xz}, \mathrm{yz}),\left(\mathrm{J}_{\mathrm{x}}, \mathrm{J}_{\mathrm{y}}\right)$ |

P transforms like $\mathrm{E} \oplus \mathrm{A}_{1} \ldots$
This representation contains the totally symmetric irrep $\mathrm{A}_{1} \ldots$
There is at least one component of P that is invariant under all symmetry operations of the group...

4 mm allows for the existence of a permanent polarization.

Group theory and representations

Is piezoelectricity (linear coupling between Polarization and Strain) allowed?

$$
\alpha \times P \times S ?
$$

For the 4 mm point group:

- P transforms like $\mathrm{A}_{1}+E$
- S transforms like $2 A_{1}+B_{1}+B_{2}+E$
- The product transforms like A1 + ..., i.e. contains A1 => YES!

For 422 point group:

- P transforms like $A_{2}+E$ (non polar group)
- Stransforms like $2 A_{1}+B_{1}+B_{2}+E$
- Also YES!

Write your own Landau potential with all the weird symmetry-allowed coupling you can think of... piezoelectric, magnetoelectric, piezomagnetic...
(You may stop at the $17^{\text {th }}$ order)

Classification and notations

For representations

Mulliken symbol:

Suitable for molecular vibrations and lattice vibration at the Г-point -> suitable for Raman and infrared spectroscopy

Koster / BSW notations:

Suitable for the description of symmetries of phonons (or other phenomena) in the whole Brillouin zone -> necessary for theoretical solid state physics, neutron scattering...

$m m 2\left(C_{2 v}\right)$		$222\left(D_{2}\right)$		E E	$\begin{aligned} & C_{2 z} \\ & C_{2 z} \end{aligned}$	$\begin{aligned} & \sigma_{y} \\ & C_{2 y} \end{aligned}$	$\begin{aligned} & \sigma_{x} \\ & C_{2 x} \end{aligned}$
A_{1}	Γ_{1}	A	Γ_{1}	1	1	1	1
B_{2}	Γ_{4}	B_{3}	Γ_{4}	1	-1	-1	1
A_{2}	Γ_{3}	B_{1}	Γ_{3}	1	1	-1	-1
B_{1}	Γ_{2}	B_{2}	Γ_{2}	1	-1	1	-1

Meaning of the Mulliken symbol

A	(one dimensional) symmetric with respect to rotation of the principle axis
B	(one dimensional) anti-symmetric with respect to rotation of the principle axis
E	doubly degenerate or two dimensional
T (or F)	thirdly degenerate or three dimensional
Subscript 1	symmetric with respect to the C_{n} principal axis, if no perpendicular axis, then it is with respect to σ_{v}
Subscript 2	anti-symmetric with respect to the C_{n} principal axis, if no perpendicular axis, then it is with respect to σ_{v}
Subscript g	symmetric with respect to the inverse
Subscript u	anti-symmetric with respect to the inverse
prime	symmetric with respect to σ_{h} (reflection in horizontal plane)
double prime	anti-symmetric with respect to σ_{h} (opposite reflection in horizontal plane)

Classification and notations

Irreps of space groups

- Labelled by k-vector, with names for special points of the Brillouin zone

bilbao crystallographic server

Contact us	About us	Publications	How to cite the server
Space-group symmetry			
GENPOS	Generato	Positions of S	
WYCKPOS	Wyckoff	ace Groups	
HKLCOND	Reflectio	Space Groups	
MAXSUB	Maximal	Space Groups	
SERIES	Series of	orphic Subgrou	
WYCKSETS	Equivale	koff Positions	
NORMALIZER	Normaliz	roups	
KVEC	The k-ve	Brillouin zones	
SYMMETRY OPERATIONS	Geometri	of matrix colu	metry operations
IDENTIFY GROUP	Identifica	Group from a	bitrary setting

Classification and notations

© bilbao crystallographic server
http:I/www.cryst.ehu.es

Fig. 3.13. The Brillouin zone for $\Gamma_{c} . \Gamma=(000) ; X=\left(0 \frac{1}{2} 0\right) ; M=\left(\frac{1}{2} 0\right) ; R=\left(\frac{1}{2} \frac{1}{2}\right)$.

Classification and notations

The k-vector types of space group $141 / a(88)$

Brillouin zone

(Diagram for arithmetic crystal class $4 / \mathrm{ml}: c / a>1$)

$$
14 / m-C_{4 h}{ }^{5}(87), 14_{1} / a-C_{4 h}{ }^{6}(88)
$$

Reciprocal-space group ($14 / \mathrm{m}$)*, No. 87 : c*/a*<1
The table with the k vectors.

© bilbao crystallographic server
http://www.cryst.ehu.es

Classification and notations

- Differences in notations (Koster, BSW, Mulliken...).

Table 2.4. Commonly used notations for the irreducible representations of the T_{d} point group

Koster notation $^{\text {a }}$	BSW notation	Molecular notation
Γ_{1}	Γ_{1}	A_{1}
Γ_{2}	Γ_{2}	A_{2}
Γ_{3}	Γ_{12}	E
Γ_{4}	Γ_{15}	T_{2}
Γ_{5}	Γ_{25}	T_{1}

${ }^{\text {a }}$ Note that Γ_{4} and Γ_{5} are sometimes reversed in the literature. We recommend the student to check it whenever he encounters this notation [2.4].

		E	$C_{2 z}$	σ_{y}	σ_{x}
$222\left(D_{2}\right)$	E	$C_{2 z}$	$C_{2 y}$	$C_{2 x}$	
A	Γ_{1}	1	1	1	1
B_{3}	Γ_{4}	1	-1	-1	1
B_{1}	Γ_{3}	1	1	-1	-1
B_{2}	Γ_{2}	1	-1	1	-1

Classification and notations

- Differences in notations (Koster, BSW, Mulliken...).
- Some arbitrariness
- in the choice of coordinate system
- in the choice of a particular setting for a space group

| $\mathrm{C}_{2 \mathrm{v}}(\mathrm{mm} 2)$ | $\#$ | 1 | 2_{z} | $\mathrm{~m}_{y}$ | $\mathrm{~m}_{x}$ | functions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A_{1} | Γ_{1} | 1 | 1 | 1 | 1 | z, x^{2}, y^{2}, z^{2} |
| $\mathrm{~A}_{2}$ | Γ_{3} | 1 | 1 | -1 | -1 | $x y, J_{z}$ |
| $\mathrm{~B}_{1}$ | Γ_{2} | 1 | -1 | 1 | -1 | $x, x z, \mathrm{~J}_{y}$ |
| $\mathrm{~B}_{2}$ | Γ_{4} | 1 | -1 | -1 | 1 | $y, y z, J_{x}$ |

Classification and notations

 LUXEMBOURG- Differences in notations (Koster, BSW, Mulliken...).
- Some arbitrariness
- in the choice of coordinate system
- in the choice of a particular setting for a space group

Pnma vs. Pbnm(62) in tilted perovskites $\mathrm{CaTiO}_{3}, \mathrm{GdFeO}_{3}, \mathrm{TbMnO}_{3}$

$\mathrm{B}_{3 \mathrm{u}}^{\mathrm{z}} \stackrel{\mathrm{B}}{2}_{\mathrm{B}}^{\mathrm{B}}$
Pbnm
(b)

Subduction and crystal field splitting

> Subgroup F

Subduction and crystal field splitting

Examples of «subduction»

Subduction and crystal field splitting

Examples of «subduction»

$\mathrm{C}_{4 \mathrm{v}}(4 \mathrm{~mm})$	\#	1	2	4	m_{x}	m_{d}	functions	$\mathrm{C}_{2 \mathrm{v}}(\mathrm{mm} 2)$	\#	1	2 z	m_{y}	m_{x}	functions
Mult.	-	1	1	2	2	2	.	A_{1}	Γ_{1}	1	1	1	1	z, x^{2}, y^{2}, z^{2}
A_{1}	Γ_{1}	1	1	1	1	1	$z, x^{2}+y^{2}, z^{2}$	A_{2}	Γ_{3}	1	1	-1	-1	$\mathrm{xy}, \mathrm{J}_{\mathrm{z}}$
A_{2}	Γ_{2}	1	1	1	-1	-1	J_{z}	B_{1}	Γ_{2}	1	-1	1	-1	$\mathrm{x}, \mathrm{xz}, \mathrm{J}_{\mathrm{y}}$
B_{1}	Γ_{3}	1	1	-1	1	-1	$\mathrm{x}^{2}-\mathrm{y}^{2}$	B_{2}	Γ_{4}	1	-1	-1	1	$\mathrm{y}, \mathrm{yz}, \mathrm{J}_{\mathrm{x}}$
B_{2}	Γ_{4}	1	1	-1	-1	1	xy							
E	Γ_{5}	2	-2	0	0	0	(x,y), (xz,yz), $\left.\mathrm{J}_{\mathrm{x},}, \mathrm{J}_{\mathrm{y}}\right)$							

Subduction and crystal field splitting

Example: d orbitals ($\mathrm{L}=2$) of a transition metal ion in a cubic environment

Supergroup: SO(3)
Group of the isolated ion

Subgroup: m-3m
Group the ion in the octahedron

All rotations are lost except 4, 2, 3, 2'

Subduction and crystal field splitting

$\mathrm{O}_{\mathrm{h}}(\mathrm{m}-3 \mathrm{~m})$	\#	1	4	2	3	$2 '$	-1	-4	m	-3	m^{\prime}	functions
Mult.	-	1	6	3	8	6	1	6	3	8	6	
$\mathrm{A}_{1 \mathrm{~g}}$	$\Gamma_{1}{ }^{+}$	1	1	1	1	1	1	1	1	1	1	$x^{2}+y^{2}+z^{2}$
$\mathrm{A}_{1 \mathrm{u}}$	$\Gamma_{1}{ }^{-}$	1	1	1	1	1	-1	-1	-1	-1	-1	
\wedge	r	1	,	1	1		1		,			

Problem:

What is the effect of the symmetry lowering experiences by the ion on the degeneracy of its energy levels?

Method:

- Calculate the characters of the preserved symmetry operations.
- Reduce the obtained representation

Subduction and crystal field splitting

	$\mathbf{1}$	$\mathbf{4}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{- 1}$	$\mathbf{- 4}$	\mathbf{m}	$\mathbf{- 3}$	$\mathbf{m}^{\mathbf{\prime}}$
\ulcorner	5	-1	1	-1	1	5	-1	1	-1	1

$\mathrm{O}_{\mathrm{h}}(\mathrm{m}-3 \mathrm{~m})$	\#	1	4		2	3	2	-1	-	-4	m	-3	m^{\prime}	functions
Mult.	-	1	6		3	8	6	1	1	6	3	8	6	
$\mathrm{A}_{1 \mathrm{~g}}$	$\Gamma_{1}{ }^{+}$	1	1		1	1	1	1	1	1	1	1	1	$x^{2}+y^{2}+z^{2}$
$\mathrm{A}_{1 \mathrm{u}}$	$\Gamma_{1}{ }^{-}$	1	1		1	1	1		1 -	-1	-1	-1	-1	,
$\mathrm{A}_{2 \mathrm{~g}}$	$\Gamma_{2}{ }^{+}$	1	-1		1	1	-1	11	1 -	-1	1	1	-1	
$\mathrm{A}_{2 \mathrm{u}}$	Γ_{2}	1	-1		1	1	-1		1	1	-1	-1	1	.
E_{g}	$\Gamma_{3}{ }^{+}$	2	0		2	-1	0	2	2	0	2	-1	0	$\left(2 z^{2}-x^{2}-y^{2}, x^{2}-y^{2}\right)$
E_{u}	Γ_{3}	2	0		2	-1	0		2	0	-2	1	0	.
$\mathrm{T}_{2 \mathrm{u}}$	Γ_{5}	3	-1		-1	0	1	-3	3	1	1	0	-1	.
$\mathrm{T}_{2 \mathrm{~g}}$	$\Gamma_{5}{ }^{+}$	3	-1		-1	0	1		3	-1	-1	0	1	(xy,xz,yz)
$\mathrm{T}_{1 \mathrm{u}}$	$\Gamma_{4}{ }^{-}$	3	1		-1	0	-1		$3-$	-1	1	0	1	($\mathrm{x}, \mathrm{y}, \mathrm{z}$)
$\mathrm{T}_{1 \mathrm{~g}}$	Γ_{4}^{+}	3	1		-1	0	-1		3	1	-1	0	-1	$\left(J_{x}, J_{y}, J_{z}\right)$

Subduction and crystal field splitting

Cubic crystal field

Which level is higher/lower depends on the special configuration.

Subduction and crystal field splitting

Correlation relation for group-subgroup pairs

Further symmetry lowering?
Ex: $\mathrm{LaNiO}_{3}, \mathrm{BiFeO}_{3} \ldots$

$m-3 m$	$-3 m$	$.3 m$
$A_{1 g}$	$A_{1 g}$	A_{1}
$A_{1 u}$	$A_{1 u}$	A_{2}
$A_{2 g}$	$A_{2 g}$	A_{2}
$A_{2 u}$	$A_{2 u}$	A_{1}
E_{g}	E_{g}	E
E_{u}	E_{u}	E
$T_{1 g}$	$A_{2 g}+E_{g}$	$A_{2}+E$
$T_{1 u}$	$A_{2 u}+E_{u}$	$A_{1}+E$
$T_{2 g}$	$A_{1 g}+E_{g}$	$A_{1}+E$
$T_{2 u}$	$A_{1 u}+E_{u}$	$A_{2}+E$

Subduction and crystal field splitting

Splitting of energy levels for Fe in BiFeO_{3}

Transition between states

E_{g}

If:

- the final state transforms like the irrep $\Gamma^{(f)}$
- the initial state transforms like the irrep $\Gamma^{(i)}$
- the perturbation transforms like the irrep $\Gamma^{\left(H^{\prime}\right)}$
then the matrix element

$$
\left\langle\varphi_{\text {final }}\right| H^{\prime}\left|\varphi_{\text {initial }}\right\rangle
$$

transforms like the direct product

$$
\Gamma^{(\mathrm{f})} \times \Gamma^{\left(H^{\prime}\right)} \times \Gamma^{(\mathrm{i})}
$$

For the transition probability to be non-zero, the direct product must contain the fully symmetric representation, i.e. contain a term that will not vanish upon all symmetry operations of the system.

Transition between states

What are the states accessible from $\mathrm{T}_{2 \mathrm{~g}}$ by an electric dipole transition?

Symmetry of the
Perturbation (electric field)

Symmetry of the initial state

Transitions from $T_{2 g}$ states can only be to/from states with $A_{2 u}, E_{u}, T_{1 u}$ or $T_{2 u}$ symmetry. Optical transitions between E_{g} and $T_{2 g}$ are forbidden (in principle...)

The mechanical representation $=$ the representation generated by atomic displacements.

How do atomic displacements transform under the symmetry operations of the group?

How to decompose the displacements onto a symmetry-adapted basis?

$\mathrm{H}_{2} \mathrm{O}$ molecule:

Point group $\mathrm{C}_{2 \mathrm{v}}=\mathrm{mm} 2=\left\{\mathrm{E}, 2_{\mathrm{z}}, \mathrm{m}_{\mathrm{x}}, \mathrm{m}_{\mathrm{y}}\right\}$
$\mathrm{N}=3$ atoms
Γ is a 9-dimensional representation.
=> the mechanical representation
Canonical basis vectors for atomic displacements:

$$
\begin{array}{lll}
e_{1}=u_{x}(O) & e_{4}=u_{x}(H 1) & e_{7}=u_{x}(H 2) \\
e_{2}=u_{y}(O) & e_{5}=u_{y}(\mathrm{H} 1) & e_{8}=u_{y}(H 2) \\
e_{3}=u_{z}(\mathrm{O}) & e_{6}=u_{z}(\mathrm{H} 1) & e_{9}=u_{z}(H 2)
\end{array}
$$

The mechanical representation

Example:

The mechanical representation

Reduction of the representation 「

« Decompose the vector space in subspaces that are stable by all symmetry operations. »

Reduce the $3 N$-dimensional reducible representation of the point group into a direct sum of irreducible representations.

Different approaches:

- Calculation of the characters, orthogonality theorem etc.
- The correlation method, well-adapted to the vibration problem.

The mechanical representation

Basic idea of the correlation method

Consider a molecule with point group G and one of its atoms with site symmetry F .

The oscillation of the atom around its equilibrium position is represented by a vector; it transforms according to irreps of F associated to translations.

The idea of the correlation method: determine how of this symmetry property is transfered to the symmetry of the whole molecule.

General recipe

Ingredients:

- Structure of the molecule (for a crystal: space group and atomic - Wyckoff positions)
- Character tables of point groups
- Correlation tables

Recipe:

1. Identify the point group of the molecule
2. Determine the number of degrees of freedom
3. Determine the site symmetries for each atom in the structure
4. Find the representations of the site symmetry point group associated to translations
5. Find the induced representations for the molecule
6. Sum over all (symmetry independent) atoms
7. Take off rigid translation and rotations

The correlation method

IIIIIIII

1. Find the point group of the molecule

The correlation method

2. Find the number of degrees of freedom

3 atoms $\rightarrow 3 \times 3=9$ degrees of freedom

- 3 rigid translations
- 3 rigid rotations
$\rightarrow 3$ vibration modes

3. Find the site symmetries for all symmetry independent atoms

2 symmetry independent atoms:
O atom: $\left\{\mathrm{E}, 2, \sigma_{x}, \sigma_{y}\right\} \rightarrow$ site symmetry $=\mathrm{C}_{2 \mathrm{v}}=m m 2=m_{x} m_{y} 2_{z}$
H atom: $\left\{\mathrm{E}, \sigma_{x},\left\{_{y}\right\} \rightarrow\right.$ site symmetry $=\mathrm{C}_{\mathrm{s}}=m=m_{x}$

The correlation method

4. Find the representations of the site symmetry point groups associated to translations.

H atoms:
Site symmetry C_{s}
H atoms:
Site symmetry C_{s}

$\mathrm{C}_{\mathrm{s}}(\mathrm{m})$	$\#$	1	m	functions
A^{\prime}	Γ_{1}	1	1	$\mathrm{x}, \mathrm{y}, \mathrm{x}^{2}, \mathrm{y}^{2}, \mathrm{z}^{2}, \mathrm{xy}, \mathrm{J}_{z}$
$\mathrm{~A}^{\prime \prime}$	Γ_{2}	1	-1	$\mathrm{z}, \mathrm{xz}, \mathrm{yz}, \mathrm{J}_{\mathrm{x}}, \mathrm{J}_{y}$

O atom:
Site symmetry $C_{2 v}$

| $\mathrm{C}_{2 \mathrm{v}}(\mathrm{mm} 2)$ | $\#$ | 1 | 2_{z} | m_{y} | m_{x} | functions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A_{1} | Γ_{1} | 1 | 1 | 1 | 1 | $\mathrm{z}^{2}, \mathrm{x}^{2}, \mathrm{y}^{2}, \mathrm{z}^{2}$ |
| $\mathrm{~A}_{2}$ | Γ_{3} | 1 | 1 | -1 | -1 | $\mathrm{xy}, \mathrm{J}_{\mathrm{z}}$ |
| B_{1} | Γ_{2} | 1 | -1 | 1 | -1 | $\mathrm{x}, \mathrm{xz}, \mathrm{J}_{\mathrm{y}}$ |
| B_{2} | Γ_{4} | 1 | -1 | -1 | 1 | $\mathrm{y}, \mathrm{yz}, \mathrm{J}_{\mathrm{x}}$ |

$R\left(T_{x}\right)+R\left(T_{y}\right)+R\left(T_{z}\right)=2 A^{\prime}+A^{\prime \prime}$

Translations in the mirror plane
Translation perpendicular to the mirror plane

Translations

1) In the mirror planes
2) perpendicular to the rotation axis

Translation along the rotation axis

The correlation method

5. Find the induced representations of the point group of the molecule

mm2	2	.m.	m..	1
A_{1}	A	A^{\prime}	A^{\prime}	A
A_{2}	A	$A^{\prime \prime}$	$A^{\prime \prime}$	A
B_{1}	B	A^{\prime}	A"	A
B_{2}	B	$A^{\prime \prime}$	A^{\prime}	A

Correlation tables for $\mathrm{C}_{2 \mathrm{v}}$

O atom: $\mathrm{B}_{1}+\mathrm{B}_{2}+\mathrm{A}_{1}$
Sit symmetry = symmetry of the molecule No change!
$B_{1}+B_{2}+A_{1}$

H atoms: $2 A^{\prime}+A^{\prime \prime}$
Correlation between $\mathrm{C}_{2 \mathrm{v}}$ and C_{s} : $A^{\prime} \rightarrow A_{1}+B_{2}$
$A^{\prime \prime} \rightarrow A_{2}+B_{1}$
$2 A_{1}+A_{2}+B_{1}+2 B_{2}$

The correlation method

Illustration of $\mathrm{A}^{\prime} \rightarrow \mathrm{A}_{1}+\mathrm{B}_{2}$

$\mathrm{C}_{\mathrm{s}}(\mathrm{m})$	\#	1	m	functions	A_{1}	Γ_{1}	1	1	1	1	1	z, x^{2}, y^{2}, z^{2}
A^{\prime}	Γ_{1}	1	1	x, y, $x^{2}, y^{2}, z^{2}, x y, J_{z}$	A_{2}	Γ_{3}	1	1	1	-1	-1	xy, J_{z}
$A^{\prime \prime}$	Γ_{2}	1	-1	z,xz,yz, $\mathrm{J}_{\mathrm{x}} \mathrm{J}_{\mathrm{y}}$	B_{1}	Γ_{2}	1	-	1	1	-1	x, xz, Jy
					B_{2}	Γ_{4}	1	-	1	-1	1	y,yz, J_{x}

Displacements of H atoms along z :

The correlation method

 UNIVERSITE DULUXEMBOURG
6. Sum over all atoms

$$
\Gamma_{\text {total }}=3 \mathrm{~A}_{1}+\mathrm{A}_{2}+2 \mathrm{~B}_{1}+3 \mathrm{~B}_{2}
$$

NB: $3+1+2+3=9$ degrees of freedom

7. Take off rotations and translations

$$
\Gamma_{\text {total }}=3 A_{1}+A_{2}+2 B_{1}+3 B_{2}
$$

| $\mathrm{C}_{2 \mathrm{v}}(\mathrm{mm} 2)$ | $\#$ | 1 | 2_{z} | $\mathrm{~m}_{\mathrm{y}}$ | m_{x} | functions | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A_{1} | Γ_{1} | 1 | 1 | 1 | 1 | 1 | $\mathrm{z}, \mathrm{x}^{2}, \mathrm{y}^{2}, \mathrm{z}^{2}$ |
| $\mathrm{~A}_{2}$ | Γ_{3} | 1 | 1 | 1 | -1 | -1 | $\mathrm{xy}, \mathrm{J}_{\mathrm{z}}$ |
| B_{1} | Γ_{2} | 1 | -1 | 1 | 1 | -1 | $\mathrm{x}, \mathrm{xz}, \mathrm{J}_{\mathrm{y}}$ |
| B_{2} | Γ_{4} | 1 | -1 | -1 | 1 | $\mathrm{y}, \mathrm{yz}, \mathrm{J}_{\mathrm{x}}$ | |

$$
\Gamma_{\text {vibrations }}=2 A_{1}+B_{2}
$$

Translations ($\mathrm{x}, \mathrm{y}, \mathrm{z}$):
$\Gamma_{\text {translations }}=\mathrm{B}_{1}+\mathrm{B}_{2}+\mathrm{A}_{1}$
Rotations ($\mathrm{J}_{\mathrm{x}}, \mathrm{J}_{\mathrm{y}}, \mathrm{J}_{2}$):
$\Gamma_{\text {rotations }}=B_{2}+B_{1}+A_{2}$

The correlation method

Summary of the procedure and results:

	Site symmetry	Representations of the sitesymmetry group for translations	Induced representations of $\mathrm{C}_{2 \mathrm{v}}$
H	C_{5}	Along $x \rightarrow A^{\prime \prime}$ Along $\mathrm{y} \rightarrow \mathrm{A}^{\prime}$ Along $\mathrm{z} \rightarrow \mathrm{A}^{\prime}$	$\begin{aligned} & A_{2}+B_{1} \\ & A_{1}+B_{2} \\ & A_{1}+B_{2} \end{aligned}$
0	$\mathrm{C}_{2 \mathrm{v}}$	Along $x \rightarrow B_{1}$ Along $\mathrm{y} \rightarrow \mathrm{B}_{2}$ Along $\mathrm{z} \rightarrow \mathrm{A}_{1}$	$\begin{aligned} & \mathrm{B}_{1} \\ & \mathrm{~B}_{2} \\ & \mathrm{~A}_{1} \\ & \hline \end{aligned}$
		- Rigid translations - Rigid rotations	$\begin{aligned} & \mathrm{A}_{1}+\mathrm{B}_{1}+\mathrm{B}_{2} \\ & \mathrm{~A}_{2}+\mathrm{B}_{1}+\mathrm{B}_{2} \end{aligned}$
		= Vibrations	$2 \mathrm{~A}_{1}+\mathrm{B}_{2}$

Symmetric stretch 110.8 THz

Bending 48.3 THz

Asymmetric stretching 113.8 THz

The correlation method

| $\mathrm{C}_{2 \mathrm{v}}(\mathrm{mm} 2)$ | $\#$ | 1 | 2 z | m_{y} | m_{x} | functions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A_{1} | Γ_{1} | 1 | 1 | 1 | 1 | $\mathrm{z}, \mathrm{x}^{2}, \mathrm{y}^{2}, \mathrm{z}^{2}$ |
| $\mathrm{~A}_{2}$ | Γ_{3} | 1 | 1 | -1 | -1 | $\mathrm{xy}, \mathrm{J}_{\mathrm{z}}$ |
| B_{1} | Γ_{2} | 1 | -1 | 1 | -1 | $\mathrm{x}, \mathrm{xz}, \mathrm{J}_{\mathrm{y}}$ |
| B_{2} | Γ_{4} | 1 | -1 | -1 | 1 | $\mathrm{y}, \mathrm{yz}, \mathrm{J}_{\mathrm{x}}$ |

	1	2	m_{y}	m_{x}
Symmetric stretching A_{1}				
Bending A_{1}				
Asymmetric stretching B_{2}				

The mechanical representation

| $\mathrm{C}_{2 \mathrm{v}}(\mathrm{mm} 2)$ | $\#$ | 1 | 2_{z} | $\mathrm{~m}_{\mathrm{y}}$ | m_{x} | functions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A_{1} | Γ_{1} | 1 | 1 | 1 | 1 | z, x^{2}, y^{2}, z^{2} |
| $\mathrm{~A}_{2}$ | Γ_{3} | 1 | 1 | -1 | -1 | $x y, J_{z}$ |
| $\mathrm{~B}_{1}$ | Γ_{2} | 1 | -1 | 1 | -1 | $x, x z, \mathrm{~J}_{y}$ |
| $\mathrm{~B}_{2}$ | Γ_{4} | 1 | -1 | -1 | 1 | $\mathrm{y}, \mathrm{yz}, \mathrm{J}_{\mathrm{x}}$ |

The mechanical representation

Modeoku

Where are the arrows?...
Find the eigenvectors for the 5 modes.

Ato m	Site symmetry	Displacements	Induced representations
M1	$m_{z} 2_{x} m_{y}$	Along x	$A_{1 g}+B_{1 g}+E_{u}$
		Along y	$A_{2 g}+B_{2 g}+E_{u}$
		Along z	$A_{2 u}+B_{2 u}+E_{g}$
	- Rigid translations	$A_{2 u}+E_{u}$	
		- Rigid rotations	$A_{2 g}+E_{g}$
	$=$ Vibrations	$A_{1 g}+B_{1 g}+B_{2 g}+B_{2 u}+E_{u}$	

| $\mathrm{D}_{4 \mathrm{~h}}(4 / \mathrm{mmm})$ | $\#$ | 1 | 2 | 4 | 2_{100} | 2_{1-10} | -1 | $\mathrm{~m}_{\mathrm{z}}$ | -4 | $\mathrm{~m}_{100}$ | $\mathrm{~m}_{1-10}$ | functions | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mult. | - | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 2 | 2 | 2 | \cdot | |
| $\mathrm{~A}_{1 \mathrm{~g}}$ | Γ_{1}^{+} | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | $\mathrm{x}^{2}+\mathrm{y}^{2}, \mathrm{z}^{2}$ |
| $\mathrm{~A}_{2 \mathrm{~g}}$ | Γ_{2}^{+} | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | $\mathrm{~J}_{\mathrm{z}}$ |
| $\mathrm{B}_{1 \mathrm{~g}}$ | Γ_{3}^{+} | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | $\mathrm{x}^{2}-\mathrm{y}^{2}$ |
| $\mathrm{~B}_{2 \mathrm{~g}}$ | $\Gamma_{4^{+}}^{+}$ | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | xy |
| E_{g} | $\Gamma_{5^{+}}$ | 2 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | $(\mathrm{xz}, \mathrm{yz}),\left(\mathrm{J}_{\mathrm{x}, \mathrm{Jy}}\right)$ |
| $\mathrm{A}_{1 \mathrm{u}}$ | $\Gamma_{1^{-}}$ | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | \cdot |
| $\mathrm{~A}_{2 \mathrm{u}}$ | $\Gamma_{2^{-}}$ | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | z |
| $\mathrm{B}_{1 \mathrm{u}}$ | $\Gamma_{3^{-}}$ | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | \cdot | |
| $\mathrm{~B}_{2 \mathrm{u}}$ | $\Gamma_{4^{-}}$ | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | \cdot |
| E_{u} | $\Gamma_{5^{-}}$ | 2 | -2 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | (x, y) | |

The mechanical representation

Modeoku - solutions

E_{u} mode

For playing around

- Bilbao crystallographic server http://www.cryst.ehu.es/
- All data needed for application of the methods, but few explanations on how to use them wisely.
- « Species » for symmetry breaking http://palata.fzu.cz/species/
- Useful to retrieve the consequence of symmetry breaking on domain structures, physical properties etc.
- ISOTROPY Software suite https://stokes.byu.edu/iso/isotropy.php
- For studies of phase transitions using Landau theory.

For further reading

- M. S. Dresselhaus, Applications of Group Theory to the Physics of Solids
- (Lecture notes) Starts from scratch, very solid and comprehensive.
- Yu and Cardona, Fundamentals of semiconductors, Springer, 2001.
- Contains a « pedestrian guide to group theory » that can be very useful for a pragmatic use of group theory applied to vibrations and electronic excitations.
- H. Poulet and J.-P. Matthieu, Spectres de vibration et symétrie de cristaux, Gordon and Breach, 1970.
- Quite comprehensive on lattice vibrations, with useful examples.
- C.J. Bradley and A.P. Cracknell, Mathematical theory of symmetry in solids, Oxford University Press, 1972.
- The Bible, and about as easy to read.

