International School of Oxide Electronics

August 29 - September 8 2023

Cargèse, France

Introduction to group theory

From an experimentalist's perspective....

Mael Guennou

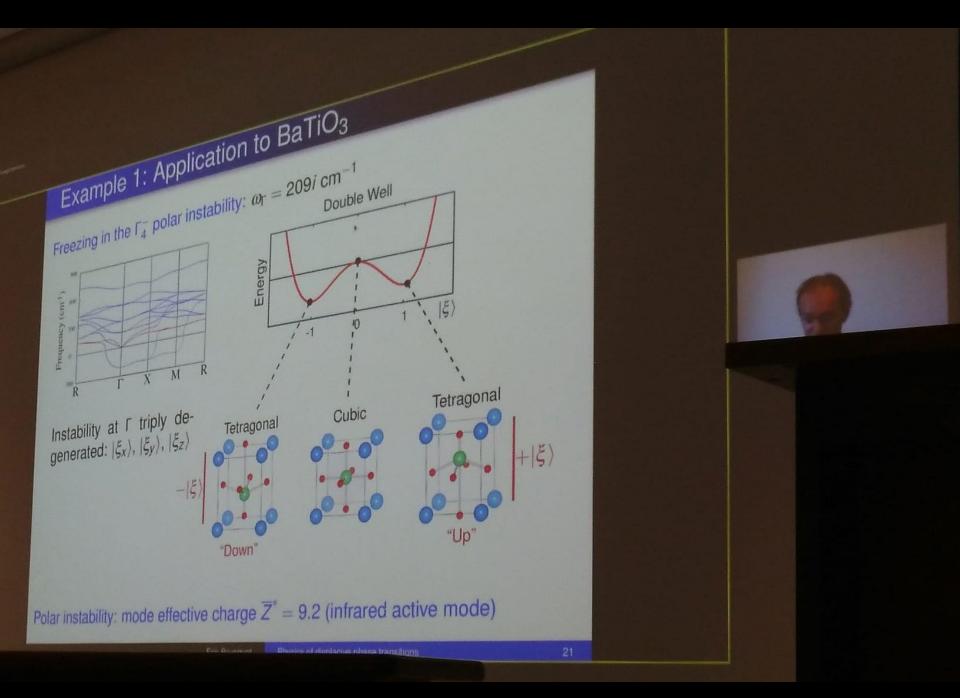
University of Luxembourg

mael.guennou@uni.lu

The primitive unit cell of orthorhombic perovskite (Pnma), has four formula units ABO₃ (in total 20 atoms), giving 60 Γ -point vibrational modes. Factor group analysis yields to the following modes:

$$\Gamma_{(\text{Pnma})} = 8A_u + 10B_{1u} + 8B_{2u} + 10B_{3u} + 7A_g + 5B_{1g} + 7B_{2g} + 5B_{3g}$$
(3)

where $7A_g + 5B_{1g} + 7B_{2g} + 5B_{3g}$, a total of 24 modes, are Raman active (Zheng et al. 2004).



Disclaimers

- (almost no) equation
- (way too much) text
- (almost no) mathematical rigour

Symmetry operations and notations

Rotations

- Noted *n* or C_n for a rotation by $2\pi/n$
- Always anti-clockwise

Mirror planes

• Noted m_u or σ_u , *u* being a normal to the plane

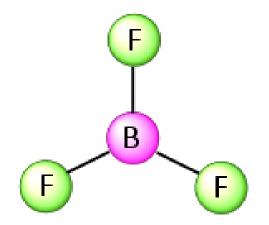
Inversion center

- Noted -1 or *i*
- For a molecule:
 - Always at the origin, when it exists
 - Unique or non-existant

Symmetry operations and notations for molecules

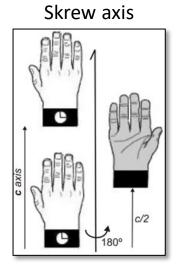
Improper rotations or rotoinversion

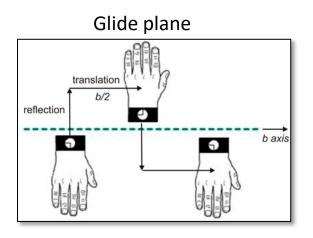
- Combination of a rotation + inversion
- Noted -n, or S_n for a rotation by $2\pi/n$
- May leave a molecule invariant even if the rotation and inversion alone do not



Additional symmetry elements for crystals:

- Translations by lattice vectors
- **Skrew axis:** Combination of a rotation and a translation along the rotation axis by a fraction of a lattice vector.
- **Glide planes:** Combination of a mirror symmetry with a translation parallel to the mirror plane by a fraction of a lattice vector





Definition of a group

A group is a set, *G*, together with an operation "o" that combines any two elements *a* and *b* to form another element, denoted *a* o *b* or *ab*, such that the following conditions are satisfied:

1. Closure:

The combination of two elements of a group must give an element of a group

2. Identity element:

There exists one element of the group such that $a \circ E = E \circ a = a$

3. Associativity:

The combination of two group elements is associative A o (B o C) = (A o B) o C

4. Inverse:

Every element has its inverse element (also element of the group). A o $A^{-1} = A^{-1} \circ A = E$

The set of symmetry elements leaving a molecule or a crystal physically invariant forms a group.

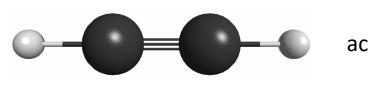
UNIVERSITÉ DU LUXEMBOURG

For crystal symmetry:

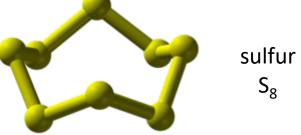
- Rotations are limited to 2,3,4 and 6 by the crystallographic restriction theorem
- 32 crystallographic point groups (+ magnetism \rightarrow 122)
- 230 crystallographic space groups (+ magnetism \rightarrow 1651)

For molecular symmetry: no particular restrictions in theory...

- crystallographic point groups
- + point groups for linear molecules
- + point groups for permitted rotation invariance (5-fold, 8-fold etc.)
- + Full rotation symmetry for isolated atoms



acetylene C₂H₂



Notion of « site symmetry »

Definition

Site symmetry of an atom A = set of symmetry operations that leave this particular atomic position unchanged

Properties

The site symmetry is described by point group, and is a subgroup of the group of the crystal or molecule.

Can be found by manual inspection, or in the international tables of crystallography.

Po	sitio	ns						
Wy		city, Tletter, metry	Coordinates					
8	d	1	(1) x, y, z (5) $\bar{x}, \bar{y}, \bar{z}$		$(\frac{1}{2}, \bar{y}, z + \frac{1}{2})$ $(\frac{1}{2}, y, \bar{z} + \frac{1}{2})$	(3) \bar{x}, y (7) x, \bar{y}		
4	с	. <i>m</i> .	$X, \frac{1}{4}, Z$	$\bar{x} + \frac{1}{2}, \frac{3}{4}, z$	$+\frac{1}{2}$ \bar{x} ,	$\frac{3}{4}, \overline{z}$ x		
4	b	ī	$0, 0, \frac{1}{2}$	$\frac{1}{2}, 0, 0$	$0, \frac{1}{2}, \frac{1}{2}$	$\frac{1}{2}, \frac{1}{2}, 0$		
4	а	Ī	0, 0, 0	$\tfrac{1}{2},0,\tfrac{1}{2}$	$0, \frac{1}{2}, 0$	$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$		

For point groups

Schoenflies notation:

suitable for point groups, molecules \rightarrow used in spectroscopy, chemistry...

Hermann-Mauguin notation (International notation): suitable for point groups and space groups \rightarrow used in physics, crystallography...

	Trio	linic		Monoc	linic	ic Orthorhombic Tetragonal			onal								
Schoenflies	C ₁	C _i	C ₂	C _s	C _{2h}	ı	D ₂	C _{2v}	D_{2h}	C ₄	S_4	C_{4h}	D_4	C _{4v}	D_{2d}	[D _{4h}
Hermann- Mauguin	1	Ī	2	т	2/n	ı	222	mm2	mmm	4	4	4 <i>/m</i>	422	4mm	₹2m	4/n	nmm
		1	Frigona	al			Нехад			gonal					Cubic		
Schoenflies	C ₃	C _{3i}	D_3	C _{3v}	D _{3d}	C ₆	C _{3h}	C _{6h}	D_6	C _{6v}	D _{3h}	D_{6h}	Т	Τ _h	0	T _d	O _h
Hermann- Mauguin	3	3	32	3т	3m	6	6	6/m	622	6mm	<u>6</u> m2	6/mmm	23	m3	432	₹3m	m∃m

Notations for the 32 crystallographic point groups

C_n (for *"cyclic"*) has an *n*-fold rotation axis.

 C_{nh} (*h* for "horizontal") is C_n + a mirror plane perpendicular to the axis of rotation.

 C_{nv} (v for "vertical") is $C_n + n$ mirror planes containing the axis of rotation.

 S_{2n} (for "Spiegel") contains only a 2n-fold rotation-reflection axis.

 C_{ni} has only a rotoinversion axis. Redundant for n>1 but sometimes used.

 D_n (for "dihedral", or two-sided) has an *n*-fold rotation axis plus *n* twofold axes perpendicular to that axis.

 D_{nh} is D_n + a horizontal mirror plane and, as a consequence, also *n* vertical mirror planes each containing the *n*-fold axis and one of the twofold axes.

 D_{nd} (*d* for "diagonal") is $D_n + n$ vertical mirror planes which pass between twofold axes (diagonal planes).

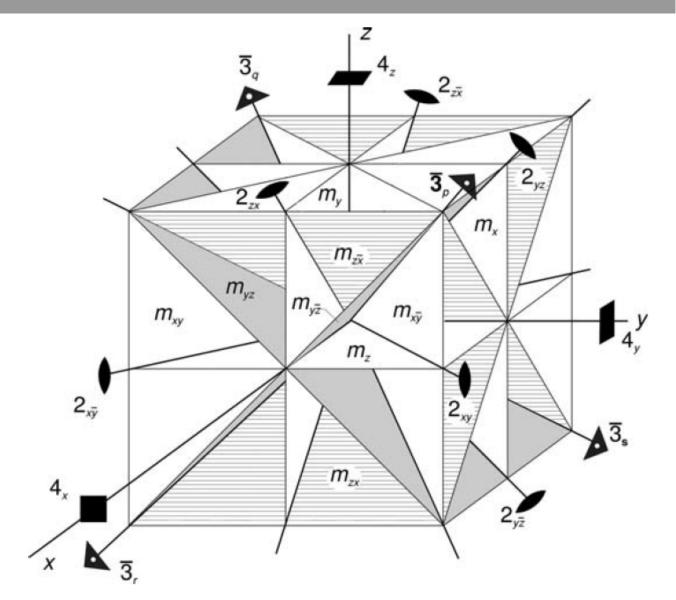
T (for *"tetrahedral"*) has the rotation axes of a tetrahedron.

 T_d (*d* for "diagonal") includes diagonal mirror planes.

 T_h (*h* for "*horizontal*") includes three horizontal mirror planes. Each plane contains two twofold axes and is perpendicular to the third twofold axis, which results in inversion center **i**.

O (for *"octahedral"*) has the rotation axes of an octahedron or cube (three 4-fold axes, four 3-fold axes, and 6 diagonal 2-fold axes).

 O_h (h for "horizontal"): includes horizontal mirror planes and, as a consequence, vertical mirror planes. It contains also inversion center and improper rotation operations.

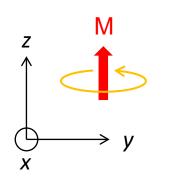


Crystallographic point groups (32)							
Piezoelec	tric (20)	Niew wiewe ele stwis					
Polar / pyroelectric (10)	Non piezoelectric						
1, 2, m, mm2, 4, 4mm, 3, 3m, 6, 6mm	222, -4, 422, -42m, 32, -6, 622, -62m, 23, 43m.	-1, 2/m, mmm, 4/m, 4/mmm, -3m, 6/m, 6/mmm, m-3, 432, -43m, m-3m					

UNIVERSITÉ DU LUXEMBOURG

Additional symmetry elements for magnetism:

- Time inversion symmetry: 1'
- Its combinations with spatial symmetry operations: e.g. m + 1' = m'



	1'	-1	m _y	m _y '
P	Î	Ļ	Î	1
м	ļ	1	Ļ	1

UNIVERSITÉ DU LUXEMBOURG

Additional symmetry elements for magnetism:

- Time inversion symmetry: 1'
- Its combinations with spatial symmetry operations: e.g. m + 1' = m'

- 32 + 32 + 58 « Shubnikov » point groups
- 230 + 230 + 1191 magnetic space groups

Cristallographic groups:

- where 1' does not exist at all
- where 1' exists as a symmetry operation (and therefore combines with all other operations)
- where 1' does not exist alone but exists in combination with some spatial symmetry operations

Magnetic Point Group Tables

bels are presented in the traditional notation - to see them in UNI notation click here)

Choose a magnetic point group from the next table

1.1.1	1	1.2.2	11'	2.1.3	-1	2.2.4	-11'	2.3.5	-1'	3.1.6	2	3.2.7	21'	3.3.8	2'
4.1.9	т	4.2.10	<i>m1'</i>	4.3.11	<i>m</i> ′	5.1.12	2/m	5.2.13	2/m1'	5.3.14	2'/m	5.4.15	2/m'	5.5.16	2'/m'
6.1.17	222	6.2.18	2221'	6.3.19	2'2'2	7.1.20	<i>mm</i> 2	7.2.21	mm21'	7.3.22	<i>m'm2'</i>	7.4.23	<i>m'm</i> '2	8.1.24	mmm
8.2.25	mmm1'	8.3.26	m'mm	8.4.27	m'm'm	8.5.28	<i>m'm'm</i> '	9.1.29	4	9.2.30	41'	9.3.31	4'	10.1.32	-4
10.2.33	-41'	10.3.34	-4'	11.1.35	4/m	11.2.36	4/m1'	11.3.37	4'/m	11.4.38	4/m'	11.5.39	4'/m'	12.1.40	422
12.2.41	4221'	12.3.42	4'22'	12.4.43	42'2'	13.1.44	4mm	13.2.45	4mm1'	13.3.46	4'm'm	13.4.47	4m'm'	14.1.48	-42m
14.2.49	-42m1'	14.3.50	-4'2'm	14.4.51	-4'2m'	14.5.52	-42'm'	15.1.53	4/mmm	15.2.54	4/mmm1'	15.3.55	4/m'mm	15.4.56	4'/mm'm
15.5.57	4'/m'm'm	15.6.58	4/mm'm'	15.7.59	4/m'm'm'	16.1.60	3	16.2.61	31'	17.1.62	-3	17.2.63	-31'	17.3.64	-3'
18.1.65	32	18.2.66	321'	18.3.67	32'	19.1.68	3 <i>m</i>	19.2.69	3m1'	19.3.70	<i>3m</i> ′	20.1.71	-3m	20.2.72	-3m1'
20.3.73	-3'm	20.4.74	-3'm'	20.5.75	-3m'	21.1.76	6	21.2.77	61'	21.3.78	6'	22.1.79	-6	22.2.80	-61'
22.3.81	-6'	23.1.82	<u>6/m</u>	23.2.83	6/m1'	23.3.84	6'/m	23.4.85	6/m'	23.5.86	6'/m'	24.1.87	622	24.2.88	6221'
24.3.89	6'22'	24.4.90	62'2'	25.1.91	6 <i>mm</i>	25.2.92	6mm1'	25.3.93	6'mm'	25.4.94	6m'm'	26.1.95	-6 <i>m</i> 2	26.2.96	-6m21'
26.3.97	-6'm'2	26.4.98	-6'm2'	26.5.99	-6m'2'	27.1.100	<i>6/mmm</i>	27.2.101	6/mmm1'	27.3.102	6/m'mm	27.4.103	6'/mmm'	27.5.104	6'/m'mm'
27.6.105	6/mm'm'	27.7.106	6/m'm'm'	28.1.107	23	28.2.108	231'	29.1.109	<i>m</i> -3	29.2.110	<i>m</i> -31'	29.3.111	<i>m'-3'</i>	30.1.112	432
30.2.113	4321'	30.3.114	4'32'	31.1.115	-43m	31.2.116	-43m1'	31.3.117	-4'3m'	32.1.118	<i>m-3m</i>	32.2.119	<i>m-3m1</i> ′	32.3.120	<i>m'-3'm</i>
32.4.121	<i>m-3m</i> ′	32.5.122	<i>m'-3'm'</i>												

Magnetic Point Group Tables of 2'/m (#5.3.14)

Useful data about magnetic point group 2'/m

Number of elements of the group (order): 4 This group is centrosymmetric This group is not polar This group is not compatible with ferromagnetism

Symmetry operations of the group

N	(x,y,z) form	matrix form	Seitz symbol
1	x,y,z, +1 m _x ,m _y ,m _z	$\left(\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right)$	1
2	x,-y,z, +1 -m _x , m _y , -m _z	$\left(\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{array}\right)$	m _y
3	-x,y,-z, -1 m _x , -m _y , m _z	$\left(\begin{array}{ccc} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{array}\right)'$	2 _y '
4	-x,-y,-z, -1 -m _x ,-m _y ,-m _z	$\left(\begin{array}{ccc} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{array}\right)$	-1'

Magnetic Point Group Tables of 2'/m' (#5.5.16)

Useful data about magnetic point group 2'/m'

Number of elements of the group (order): 4 This group is centrosymmetric This group is not polar This group is compatible with ferromagnetism

Symmetry operations of the group

Ν	(x,y,z) form	matrix form	Seitz symbol
1	x,y,z, +1 m _x ,m _y ,m _z	$\left(\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right)$	1
2	-x,-y,-z, +1 m _x , m _y , m _z	$\left(\begin{array}{ccc} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{array}\right)$	-1
3	-x,y,-z, -1 m _x , -m _y , m _z	$\left(\begin{array}{ccc} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{array}\right)'$	2 _y '
4	x,-y,z, -1 m _x ,-m _y ,m _z	$\left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{array}\right)'$	m _y '

Magnetic Point Group Tables of 2'/m (#5.3.14)

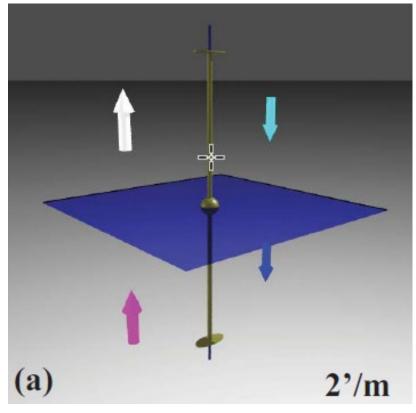
Useful data about magnetic point group 2'/m

Number of elements of the group (order): 4 This group is centrosymmetric This group is not polar This group is not compatible with ferromagnetism

Symmetry operations of the group

N	(x,y,z) form	matrix form	Seitz symbol
1	x,y,z, +1 m _x ,m _y ,m _z	$\left(\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right)$	1
2	x,-y,z, +1 -m _x , m _y , -m _z	$\left(\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{array}\right)$	m _y
3	-x,y,-z, -1 m _x , -m _y , m _z	$\left(\begin{array}{ccc} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{array}\right)'$	2 _y '
4	-x,-y,-z, -1 -m _{x1} -m _y ,-m _z	$\left(\begin{array}{ccc} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{array}\right)$	-1'

But compatible with antiferromagnetic orders



Marc de Graef, Teaching pamphlet UICr

Definition of a representation

Given a vector space V, a representation R of a group G is a group homorphism from G to $GL_n(V)$, i.e. a mapping $G \rightarrow GL_n(V)$ $g_i \rightarrow R(g_i)$ where $R(g_i)$ is a square $n \ge n$ matrix, such that $R(g_i,g_i) = R(g_i).R(g_i)$

n is the dimension of the representation.

The *basis* of a representation is the basis of V used to write its matrices.

The *characters* of a representation are the traces of its matrices.

Common vector space *V* in condensed matter physics:

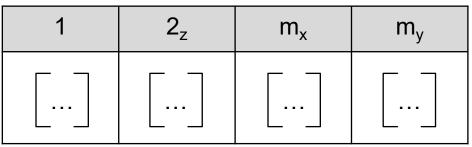
- Quantum states of electrons, nuclei...
- Atomic displacements for vibrations and phase transitions
- Tensor describing physical properties (polarization, magnetization, elastic constants etc.)

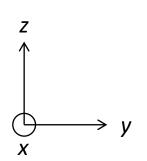
Definition of a representation

Given a vector space V, a representation R of a group G is a group homorphism from G to $GL_n(V)$, i.e. a mapping

 $G \rightarrow GL_{n}(V)$ $g_{i} \rightarrow R(g_{i})$ where R(g_{i}) is a square n x n matrix, such that $R(g_{i}.g_{i}) = R(g_{i}).R(g_{i})$

Example for the mm2 point group





Example: the totally symmetric representation

 $G \rightarrow GL_1(V)$ $g_i \rightarrow (1)$

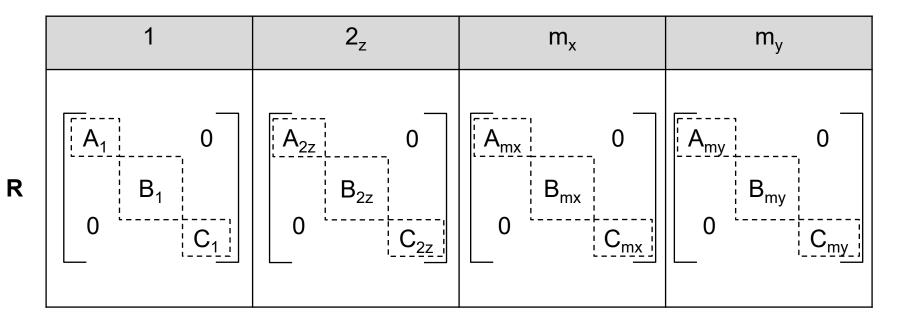
1	2 _z	m _x	m _y		
1	1	1	1		

- It always exists.
- All scalar properties *transform like* it (temperature, entropy etc).
- It is not « faithful ».

UNIVERSITÉ DU LUXEMBOURG

Reducible vs. irreducible representation

A representation is reducible if the vector space V can be decomposed into (proper) subspaces stable by all symmetry operations, i.e. all matrices can be written as:



If this is not possible, the representation is called irreducible (an « irrep »).

The reducible representation can be reduced into a *direct sum* of irreducible representations (« irreps »):

	1	2 _z	m _x	m _y
Α	A ₁	A _{2Z}	A _{mx}	A _{my}
В	B ₁	B _{2z}	B _{mx}	B _{my}
С		C _{2z}	C _{mx}	C _{my}

 $R = A \bigoplus B \bigoplus C$ dim(R) = dim(A) + dim(B) + dim(C) X(R) = X(A) + X(B) + X(C)

The « everything-works-nicely-for-us » theorems

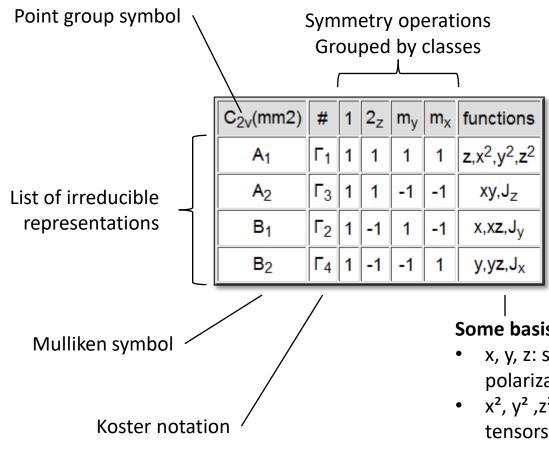
- Maschke's theorem
- Schur's lemma
- Wonderful (or great) orthogonality theorem
- ...
- The irreps we need are known, tabulated and independant of a particular choice of basis.
- Every representation can be decomposed into a sum of irreps, and this decomposition is unique.
- All you need is the character tables.
- The irreps of a group gives you a tool to describe how things transform under all the symmetry operations of the group.

bilbao crystallographic server

Contact us	About us	Publications	How to cite the server					
		Space-group symmetry						
	Ма	gnetic Symmetry and Applicat	ions					
	Group-Subgroup Relations of Space Groups							
	R	epresentations and Applicatio	ns					
	Point and Space Groups							
REPRES	Space Groups F	Representations						
Representations PG	Irreducible repre	esentations of the crystallographic Point (Groups					
Representations SG	Irreducible repre	esentations of the Space Groups						
Get_irreps	Irreps and order	parameters in a space group-subgroup	phase transition					
DIRPRO	Direct Products	of Space Group Irreducible Representati	ions					
CORREL	Correlations rela	ations between the irreducible representa	ations of a group-subgroup pair					
POINT	Point Group Tab	bles						
SITESYM	Site-symmetry in	nduced representations of Space Groups	3					
COMPATIBILITY RELATIONS	Compatibility rel	lations between the irreducible represent	ations of a space group					
MECHANICAL REP.	Decomposition of	of the mechanical representation into irre	ps					

Bilbao crystallographic server - http://www.cryst.ehu.es/

Character tables



Some basis « functions »:

- x, y, z: span the vectors, i.e. the translations, polarization, etc.
- x², y², z², xy, yz, zx: span spaces of a 2nd rank tensors (dielectric constant, Raman tensor...)
- J_x, J_y, J_z: span the rotations

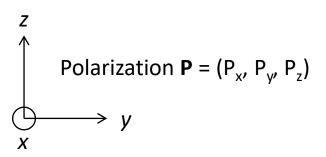
Character tables

C _{2v} (mm2)	#	1	2 _z	my	m _x	functions
A ₁	Г1	1	1	1	1	z ,x ² ,y ² ,z ²
A ₂	Г3	1	1	-1	-1	xy,J _z
B ₁	Γ ₂	1	-1	1	-1	x,xz,J _y
B ₂	Г4	1	-1	-1	1	y,yz,J _X

Check the orthogonality of the irreps and characters...

UNIVERSITÉ DU LUXEMBOURG

Example: how polarisation transforms 2mm point group

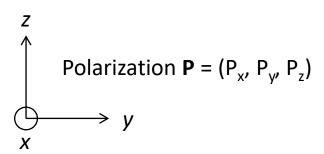


	1	2 _z	m _y	m _x
Р	$\left(\begin{array}{rrrr}1&\cdot&\cdot\\\cdot&1&\cdot\\\cdot&\cdot&1\end{array}\right)$	$\left(\begin{array}{rrrr} -1 & \cdot & \cdot \\ \cdot & -1 & \cdot \\ \cdot & \cdot & 1 \end{array}\right)$	$\left(\begin{array}{rrrr}1&\cdot&\cdot\\\cdot&-1&\cdot\\\cdot&\cdot&1\end{array}\right)$	$\left(\begin{array}{rrrr} -1 & \cdot & \cdot \\ \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{array}\right)$

3-dimensional, reducible representation

Bilbao crystallographic server - <u>http://www.cryst.ehu.es/</u>

Example: how polarisation transforms 2mm point group



	1	2 _z	m _y	m _x
P _x	\bigcirc	8	0	8
Py	→	ł	ł	^
Pz	1	1	1	1

	1	2 _z	m _y	m _x
P _x	1	-1	1	-1
Py	1	-1	-1	1
Pz	1	1	1	1

uni lu

Example: how polarisation transforms 2mm point group

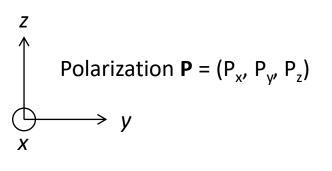
	1	2 _z	m _y	m _x
P _x	1	-1	1	-1
Py	1	-1	-1	1
Pz	1	1	1	1

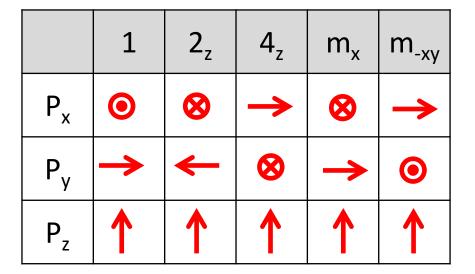
C _{2v} (mm2)	#	1	2 _z	my	m _x	functions
A ₁	Г1	1	1	1	1	z,x ² ,y ² ,z ²
A ₂	Г3	1	1	-1	-1	xy,J _z
B ₁	Г ₂	1	-1	1	-1	x,xz,J _y
B ₂	Г4	1	-1	-1	1	y,yz,J _X

3-dimensional, reducible representation

Decomposition into $B_1 \oplus B_2 \oplus A_1$

Example: how polarisation transform 4mm point group

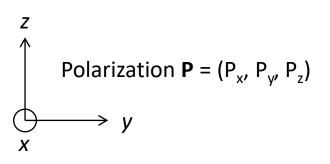




	1	2 _z	4 _z	m _x	m _{-xy}
Р	$\left(\begin{array}{rrrr}1&\cdot&\cdot\\\cdot&1&\cdot\\\cdot&\cdot&1\end{array}\right)$	$\left(\begin{array}{rrrr} -1 & \cdot & \cdot \\ \cdot & -1 & \cdot \\ \cdot & \cdot & 1 \end{array}\right)$	$\left(\begin{array}{ccc} \cdot & -1 & \cdot \\ 1 & \cdot & \cdot \\ \cdot & \cdot & 1 \end{array}\right)$	$\left(\begin{array}{rrr} -1 & \cdot & \cdot \\ \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{array}\right)$	$\left(\begin{array}{rrrr} \cdot & 1 & \cdot \\ 1 & \cdot & \cdot \\ \cdot & \cdot & 1 \end{array}\right)$

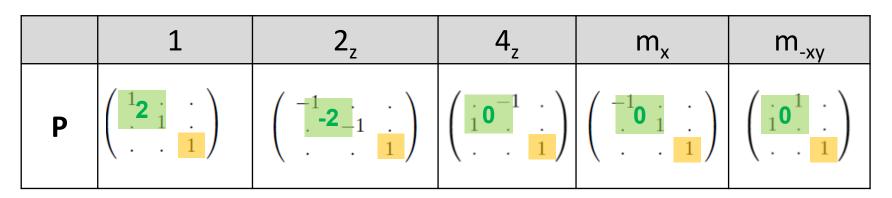
3-dimensional, reducible representation

Example: how polarisation transform 4mm point group



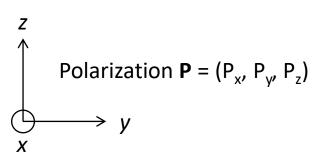
Character Table of the group C4v(4mm)*

C _{4v} (4mm)	#	1	2	4	m ₁₀₀	m ₁₋₁₀	functions
Mult.	-	1	1	2	2	2	
A ₁	Γ ₁	1	1	1	1	1	z,x ² +y ² ,z ²
A ₂	Γ ₂	1	1	1	-1	-1	Jz
B ₁	Г 3	1	1	-1	1	-1	x ² -y ²
B ₂	Γ4	1	1	-1	-1	1	ху
E	Γ ₅	2	-2	0	0	0	$(x,y),(xz,yz),(J_x,J_y)$



Decomposition into $E \bigoplus A_1$

Example: how polarisation transform 4mm point group



Character Table of the group C4v(4mm)*

C _{4v} (4mm)	#	1	2	4	m ₁₀₀	m ₁₋₁₀	functions
Mult.	-	1	1	2	2	2	
A ₁	Γ ₁	1	1	1	1	1	z,x ² +y ² ,z ²
A ₂	Г ₂	1	1	1	-1	-1	Jz
B ₁	Г 3	1	1	-1	1	-1	x ² -y ²
B ₂	Γ4	1	1	-1	-1	1	ху
E	Г ₅	2	-2	0	0	0	$(x,y),(xz,yz),(J_x,J_y)$

P transforms like $E \bigoplus A_1...$

This representation *contains* the totally symmetric irrep A_1 ...

There is at least one component of P that is invariant under all symmetry operations of the group...

4mm allows for the existence of a permanent polarization.

Is piezoelectricity (linear coupling between Polarization and Strain) allowed?

α x P x S?

For the 4mm point group:

- P transforms like A₁ + E
- S transforms like $2A_1 + B_1 + B_2 + E$
- The product transforms like A1 + ..., i.e. contains A1 => YES!

For 422 point group:

- P transforms like A₂ + E (non polar group)
- S transforms like $2\overline{A}_1 + B_1 + B_2 + E$
- Also YES!

Write your own Landau potential with all the weird symmetry-allowed coupling you can think of... piezoelectric, magnetoelectric, piezomagnetic...

(You may stop at the 17th order)

For representations

Mulliken symbol:

Suitable for molecular vibrations and lattice vibration at the Γ-point -> suitable for Raman and infrared spectroscopy

Koster / BSW notations:

Suitable for the description of symmetries of phonons (or other phenomena) in the whole Brillouin zone -> necessary for theoretical solid state physics, neutron scattering...

mm2	(C _{2v})	222	(<i>D</i> ₂)	E E	$\begin{array}{c} C_{2z} \\ C_{2z} \end{array}$	σ_y C_{2y}	$\sigma_x \\ C_{2x}$
$A_1 \\ B_2 \\ A_2 \\ B_1$	$\Gamma_1 \\ \Gamma_4 \\ \Gamma_3 \\ \Gamma_2$	$ \begin{array}{c} A\\B_3\\B_1\\B_2 \end{array} $	$ \begin{array}{c} \Gamma_1 \\ \Gamma_4 \\ \Gamma_3 \\ \Gamma_2 \end{array} $	1 1 1 1	$ \begin{array}{c} 1 \\ -1 \\ 1 \\ -1 \\ -1 \end{array} $	$ \begin{array}{c} 1 \\ -1 \\ -1 \\ 1 \end{array} $	$1 \\ 1 \\ -1 \\ -1 \\ -1$
	mmn	n = 22	$2 \otimes \overline{1}$ ($(D_{2h} =$	$= D_2 \otimes$	C;)	

Bradley & Cracknell, *The mathematical theory of symmetry in solids*, Clarendon Press, 1972.

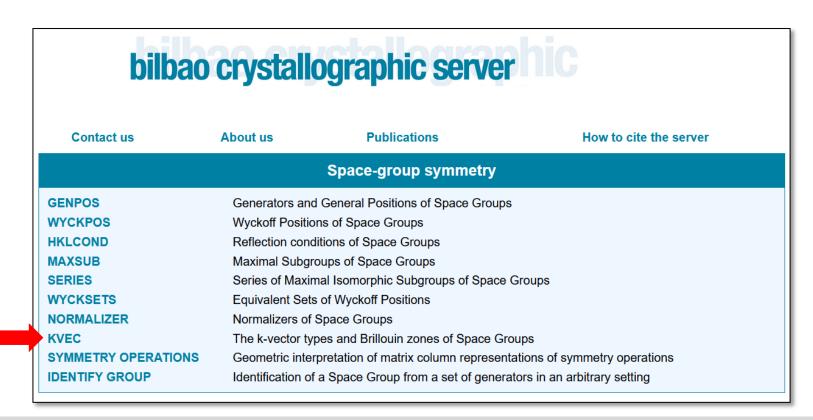
Meaning of the Mulliken symbol

А	(one dimensional) symmetric with respect to rotation of the principle axis
В	(one dimensional) anti-symmetric with respect to rotation of the principle axis
E	doubly degenerate or two dimensional
T (or F)	thirdly degenerate or three dimensional
Subscript 1	symmetric with respect to the C $_{\rm n}$ principal axis, if no perpendicular axis, then it is with respect to $\sigma_{\rm v}$
Subscript 2	anti-symmetric with respect to the C _n principal axis, if no perpendicular axis, then it is with respect to σ_v
Subscript g	symmetric with respect to the inverse
Subscript u	anti-symmetric with respect to the inverse
prime	symmetric with respect to σ_h (reflection in horizontal plane)
double prime	anti-symmetric with respect to σ_h (opposite reflection in horizontal plane)

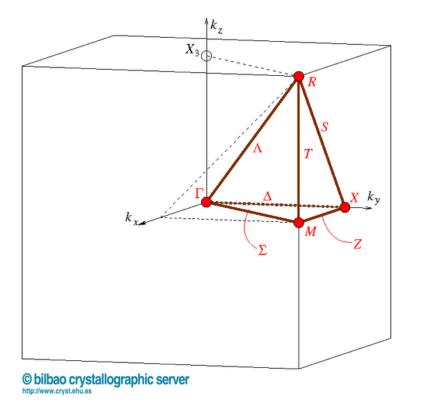
R. S. Mulliken, J. Chem. Phys 23, 1997 (1955); J. Chem. Phys. 24, 1118 (1956); Adapted from http://chemwiki.ucdavis.edu/.

Irreps of space groups

Labelled by k-vector, with names for special points of the Brillouin zone



Bradley & Cracknell, *The mathematical theory of symmetry in solids*, Clarendon Press, 1972.



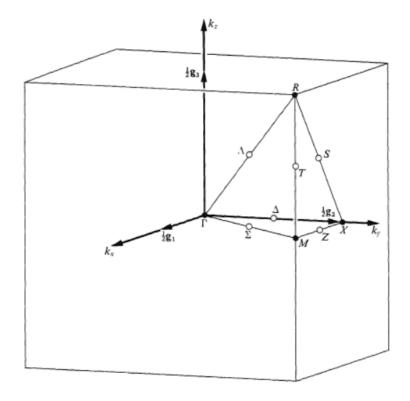


FIG. 3.13. The Brillouin zone for Γ_c . $\Gamma = (000)$; $X = (0\frac{1}{2}0)$; $M = (\frac{1}{2}0)$; $R = (\frac{1}{2}\frac{1}{2})$.

Bradley & Cracknell, The mathematical theory of symmetry in solids, Clarendon Press, 1972.

The k-vector types of space group I41/a (88)

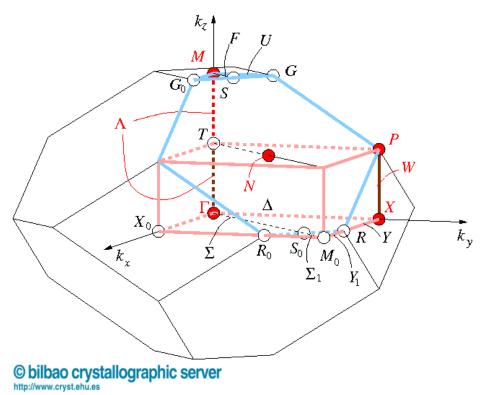
Brillouin zone

(Diagram for arithmetic crystal class 4/ml : c/a>1)

I4/m-C_{4h}⁵ (87), I4₁/a-C_{4h}⁶ (88)

Reciprocal-space group (I4/m)*, No. 87 : c*/a*<1

The table with the k vectors.



Differences in notations (Koster, BSW, Mulliken...).

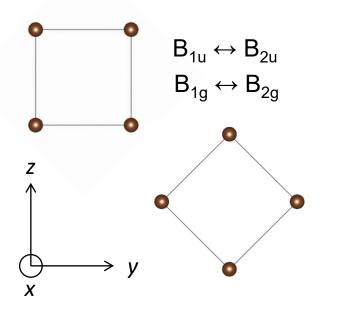
Table 2.4. Commonly used notations for the irreducible representations of the T_d point group

Koster notation ^a	BSW notation	Molecular notation
Γ_1	Γ_1	A_1
Γ_2	Γ_2	A_2
Γ_3	Γ_{12}	Ε
Γ_4	Γ_{15}	T_2
Γ_5	Γ_{25}	T_1

^a Note that Γ_4 and Γ_5 are sometimes reversed in the literature. We recommend the student to check it whenever he encounters this notation [2.4].

222 (L) ₂)	E E	$\begin{array}{c} C_{2z} \\ C_{2z} \end{array}$	$\sigma_y \ C_{2y}$	σ_x C_{2x}
$A \\ B_3 \\ B_1 \\ B_2$	$ \begin{array}{c} \Gamma_1 \\ \Gamma_4 \\ \Gamma_3 \\ \Gamma_2 \end{array} $	1 1 1 1	$ \begin{array}{c} 1 \\ -1 \\ 1 \\ -1 \end{array} $	$ \begin{array}{c} 1 \\ -1 \\ -1 \\ 1 \end{array} $	1 1 -1 -1

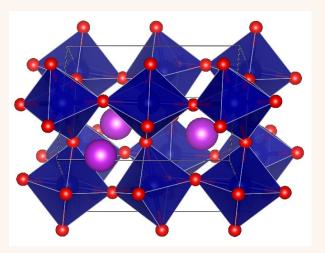
- Differences in notations (Koster, BSW, Mulliken...).
- Some arbitrariness
 - in the choice of coordinate system
 - in the choice of a particular setting for a space group

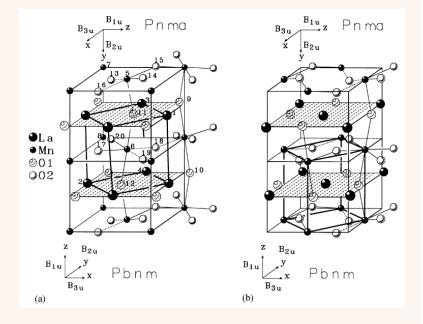


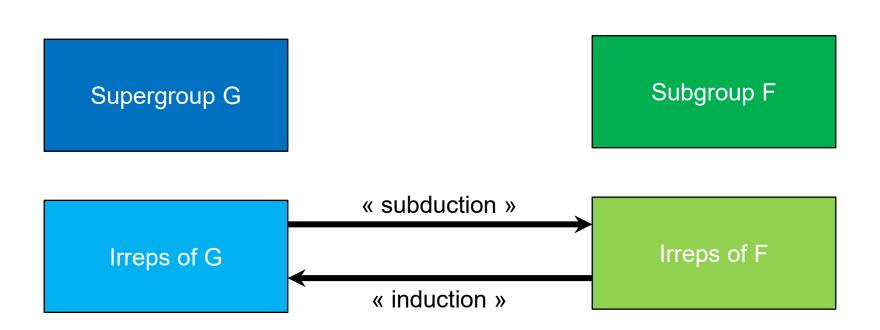
C _{2v} (mm2)	#	1	2 _z	my	m _x	functions
A ₁	Г1	1	1	1	1	z ,x ² ,y ² ,z ²
A ₂	Г3	1	1	-1	-1	xy,J _z
B ₁	Γ ₂	1	-1	1	-1	x,xz,J _y
B ₂	Г4	1	-1	-1	1	y,yz,J _X

- Differences in notations (Koster, BSW, Mulliken...).
- Some arbitrariness
 - in the choice of coordinate system
 - in the choice of a particular setting for a space group

Pnma vs. Pbnm(62) in tilted perovskites CaTiO₃, GdFeO₃, TbMnO₃







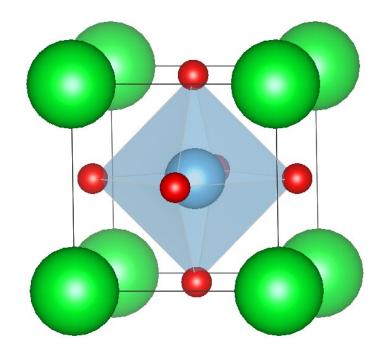
Examples of « subduction »

C _{2v} (mm2)	#	1	2 _z	my	m _x	functions						
A ₁	Г1	1	1	1	1	z,x ² ,y ² ,z ²		C _S (m)	#	1	m	functions
A ₂	Гз	1	1	-1	-1	xy,J _z		A	Г1	1	1	x,y,x ² ,y ² ,z ² ,xy,J _z
B ₁	٢2	1	-1	1	-1	x,xz,J _y	\rightarrow	Α"	Г2	1	-1	z,xz,yz,J _x ,J _y
B ₂	Γ4	1	-1	-1	1	y,yz,J _X						

Examples of « subduction »

C _{4v} (4mm)	#	1	2	4	m _x	m _d	functions	C _{2v} (mm2)	#	1	2 _z	my	m _x	functions
Mult.	-	1	1	2	2	2		A ₁	Γ ₁	1	1	1	1	z,x ² ,y ² ,z ²
A ₁	Г ₁	1	1	1	1	1	z,x ² +y ² ,z ²	A ₂	Гз	1	1	-1	-1	xy,J _Z
A ₂	Г2	1	1	1	-1	-1	Jz	B ₁	Γ2	1	-1	1	-1	x,xz,J _y
B ₁	Г3	1	1	-1	1	-1	x ² -y ²	B ₂	Γ4	1	-1	-1	1	y,yz,J _x
B ₂	Γ4	1	1	-1	-1	1	ху							
E	Γ ₅	2	-2	0	0	0	$(x,y),(xz,yz),(J_x,J_y)$							

Example: *d* orbitals (L=2) of a transition metal ion in a cubic environment



Supergroup: SO(3) Group of the isolated ion **Subgroup:** m-3m Group the ion in the octahedron

All rotations are lost except 4, 2, 3, 2'

O _h (m-3m)	#	1	4	2	3	2'	-1	-4	m	-3	m'	functions
Mult.	-	1	6	3	8	6	1	6	3	8	6	•
A _{1g}	Γ ₁ +	1	1	1	1	1	1	1	1	1	1	x ² +y ² +z ²
A _{1u}	Γ ₁ -	1	1	1	1	1	-1	-1	-1	-1	-1	•
Δ	F +	_										

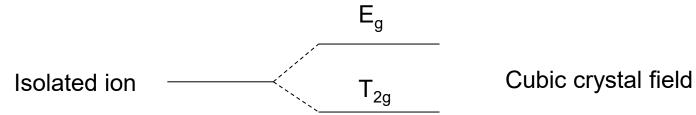
Problem:

What is the effect of the symmetry lowering experiences by the ion on the degeneracy of its energy levels?

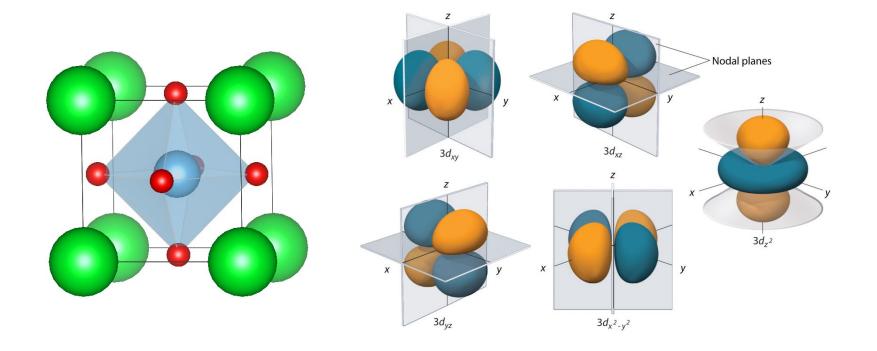
Method:

- Calculate the characters of the preserved symmetry operations.
- Reduce the obtained representation

	1 4		2		3		2	,	_'	1	-	4	m	-3	m'
Г	5 -1		1		-1		1		5		-	1	1	-1	1
	O _h (m-3m)	#	1	4	2	3	2'	-1	-4	m	-3	m'	func	tions	
	Mult.	-	1	6	3	8	6	1	6	3	8	6		•	
	A _{1g}	Γ ₁ +	1	1	1	1	1	1	1	1	1	1	x ² +y	/ ² +z ²	
	A _{1u}	Γ ₁ -	1	1	1	1	1	-1	-1	-1	-1	-1			
	A _{2g}	Γ ₂ +	1	-1	1	1	-1	1	-1	1	1	-1			
	A _{2u}	Γ2-	1	-1	1	1	-1	-1	1	-1	-1	1			
E	Eg	Γ ₃ +	2	0	2	-1	0	2	0	2	-1	0	(2z ² -x ² -	y ² ,x ² -y ²	2)
	Eu	Γ ₃ -	2	0	2	-1	0	-2	0	-2	1	0		•	
	T _{2u}	Γ ₅ -	3	-1	-1	0	1	-3	1	1	0	-1			
_ C	T _{2g}	Γ ₅ +	3	-1	-1	0	1	3	-1	-1	0	1	(xy,x	(z,yz)	
	T _{1u}	Γ ₄ -	3	1	-1	0	-1	-3	-1	1	0	1	(X,	y,z)	
	T _{1g}	Γ ₄ +	3	1	-1	0	-1	3	1	-1	0	-1	(J _x ,J _y ,J _z)		



Which level is higher/lower depends on the special configuration.

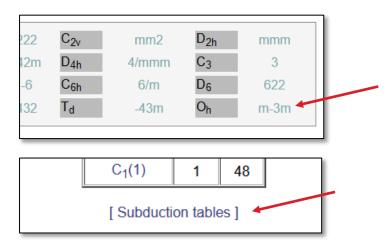


Correlation relation for group-subgroup pairs

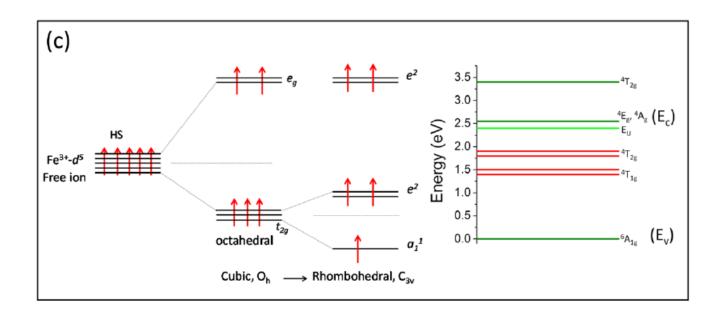
m-3m	3m	.3m	
A _{1g}	A _{1g}	A ₁	
A _{1u}	A _{1u}	A ₂	
A _{2g}	A _{2g}	A ₂	
A _{2u}	A _{2u}	A ₁	
Eg	Eg	E	
Eu	Eu	E	
T _{1g}	A _{2g} + E _g	A ₂ + E	
T _{1u}	A _{2u} + E _u	A ₁ + E	
T _{2g}	A _{1g} + E _g	A ₁ + E	
T _{2u}	A _{1u} + E _u	A ₂ + E	

Further symmetry lowering?

Ex: LaNiO₃, BiFeO₃...

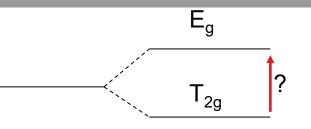


Splitting of energy levels for Fe in BiFeO₃



Bai et al., J. Solid. State Chem. (2016)

Transition between states



lf:

- the final state transforms like the irrep $\Gamma^{(f)}$
- the initial state transforms like the irrep $\Gamma^{(i)}$
- the perturbation transforms like the irrep $\Gamma^{(H^\prime)}$

then the matrix element

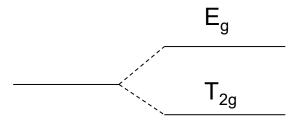
 $\langle \varphi_{final} | H' | \varphi_{initial} \rangle$

transforms like the direct product

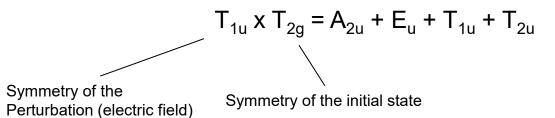
 $\Gamma^{(f)} \mathrel{X} \Gamma^{(H')} \mathrel{X} \Gamma^{(i)}$

For the transition probability to be non-zero, the direct product must contain the fully symmetric representation, i.e. contain a term that will not vanish upon all symmetry operations of the system.

Transition between states



What are the states accessible from T_{2g} by an electric dipole transition?

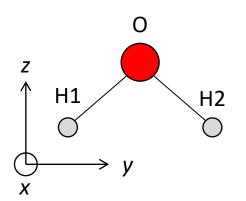


Transitions from T_{2g} states can only be to/from states with A_{2u} , E_u , T_{1u} or T_{2u} symmetry. Optical transitions between E_g and T_{2g} are forbidden (in principle...)

The mechanical representation = the representation generated by atomic displacements.

How do atomic displacements transform under the symmetry operations of the group?

How to decompose the displacements onto a symmetry-adapted basis?



H₂O molecule:

Point group $C_{2v} = mm2 = \{E, 2_z, m_x, m_y\}$

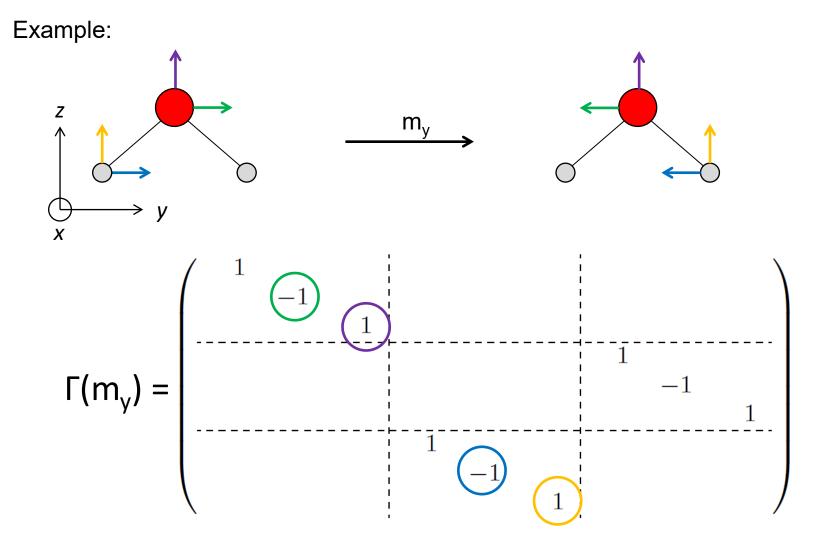
N = 3 atoms

 Γ is a 9-dimensional representation.

=> the mechanical representation

Canonical basis vectors for atomic displacements:

$$\begin{array}{ll} e_1 = u_x(O) & e_4 = u_x(H1) & e_7 = u_x(H2) \\ e_2 = u_y(O) & e_5 = u_y(H1) & e_8 = u_y(H2) \\ e_3 = u_z(O) & e_6 = u_z(H1) & e_9 = u_z(H2) \end{array}$$



Reduction of the representation **Г**

« Decompose the vector space in subspaces that are stable by all symmetry operations. »

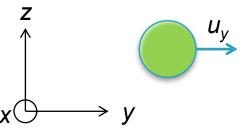
Reduce the *3N*-dimensional reducible representation of the point group into a direct sum of irreducible representations.

Different approaches:

- Calculation of the characters, orthogonality theorem etc.
- The *correlation method*, well-adapted to the vibration problem.

Basic idea of the correlation method

Consider a molecule with point group G and one of its atoms with site symmetry F.



The oscillation of the atom around its equilibrium position is represented by a vector; it transforms according to irreps of F associated to translations.

The idea of the correlation method: determine how of this symmetry property is transferred to the symmetry of the whole molecule.

General recipe

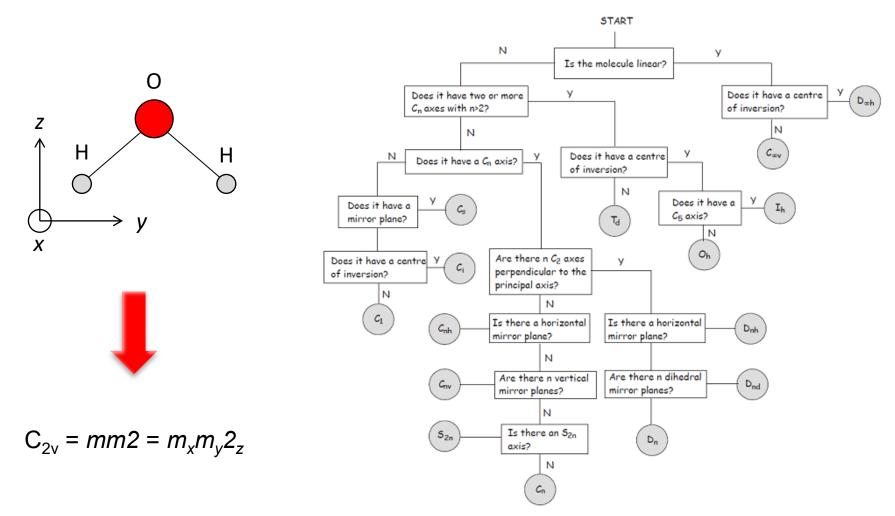
Ingredients:

- Structure of the molecule (for a crystal: space group and atomic Wyckoff positions)
- Character tables of point groups
- Correlation tables

Recipe:

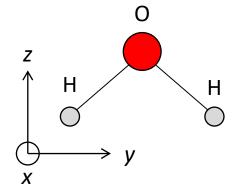
- 1. Identify the point group of the molecule
- 2. Determine the number of degrees of freedom
- 3. Determine the site symmetries for each atom in the structure
- 4. Find the representations of the site symmetry point group associated to translations
- 5. Find the induced representations for the molecule
- 6. Sum over all (symmetry independent) atoms
- 7. Take off rigid translation and rotations

1. Find the point group of the molecule



2. Find the number of degrees of freedom

- 3 atoms \rightarrow 3 x 3 = 9 degrees of freedom
- 3 rigid translations
- 3 rigid rotations
- \rightarrow 3 vibration modes



3. Find the site symmetries for all symmetry independent atoms

2 symmetry independent atoms:

O atom: {E, 2,
$$\sigma_x$$
, σ_y } \rightarrow site symmetry = $C_{2v} = mm2 = m_x m_y 2_z$

H atom: {E,
$$\lambda, \sigma_x, \sigma_y$$
} \rightarrow site symmetry = C_s = $m = m_x$

4. Find the representations of the site symmetry point groups associated to translations.

H atoms: Site symmetry C_s

C _S (m)	#	1	m	functions
A	Г1	1	1	x,y,x ² ,y ² ,z ² ,xy,J _Z
Α"	Γ ₂	1	-1	z,xz,yz,J _x ,J _y

$$R(T_x) + R(T_y) + R(T_z) = 2A' + A''$$
Translations in the mirror plane
Translation perpendicular to the mirror plane

nni h

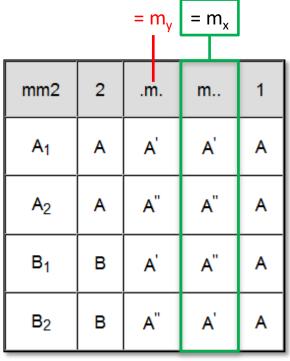
O atom: Site symmetry C_{2v}

C _{2v} (mm2)	#	1	2 _z	my	m _x	functions
A ₁	Г1	1	1	1	1	z,x ² ,y ² ,z ²
A ₂	Гз	1	1	-1	-1	xy,J _z
B ₁	Γ2	1	-1	1	-1	x,xz,J _y
B ₂	Γ4	1	-1	-1	1	y,yz,J _X

$$R(T_x) + R(T_y) + R(T_z) = B_1 + B_2 + A_1$$
Translations
1) In the mirror planes
2) perpendicular to the rotation axis

Translation along the rotation axis

5. Find the induced representations of the point group of the molecule



Correlation tables for C_{2v}

O atom: $B_1 + B_2 + A_1$ Sit symmetry = symmetry of the molecule No change! $B_1 + B_2 + A_1$

H atoms: 2A' + A''Correlation between C_{2v} and C_s : $A' \rightarrow A_1 + B_2$ $A'' \rightarrow A_2 + B_1$ $\Longrightarrow 2A_1 + A_2 + B_1 + 2B_2$

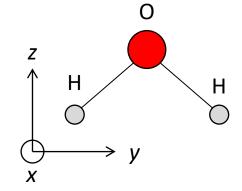
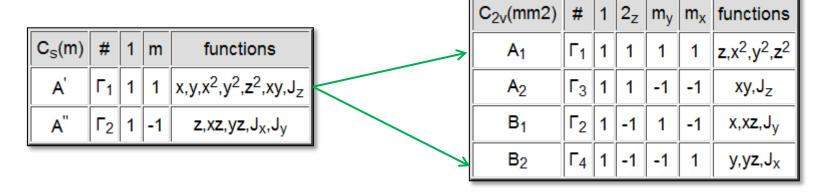
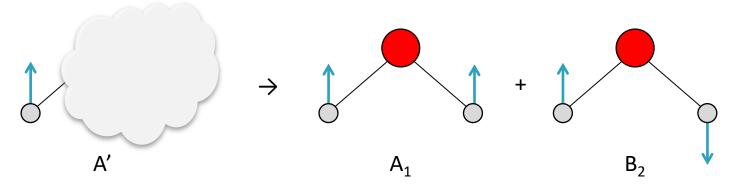


Illustration of $A' \rightarrow A_1 + B_2$



Displacements of H atoms along z:



6. Sum over all atoms

 $\Gamma_{\text{total}} = 3A_1 + A_2 + 2B_1 + 3B_2$

7. Take off rotations and translations

 $\Gamma_{\text{total}} = 3A_1 + A_2 + 2B_1 + 3B_2$

C _{2v} (mm2)	#	1	2 _z	my	m _x	functions
A ₁	Г1	1	1	1	1	z ,x ² ,y ² ,z ²
A ₂	Г3	1	1	-1	-1	xy,J _z
B ₁	Γ ₂	1	-1	1	-1	x,xz,J _y
B ₂	Г4	1	-1	-1	1	y,yz,J _X

 $\Gamma_{\text{vibrations}} = 2A_1 + B_2$

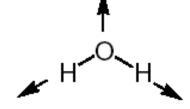
NB: 3 + 1 + 2 + 3 = 9 degrees of freedom

Translations (x, y, z): $\Gamma_{\text{translations}} = B_1 + B_2 + A_1$

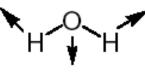
Rotations (J_x, J_y, J_z) : $\Gamma_{\text{rotations}} = B_2 + B_1 + A_2$

Summary of the procedure and results:

	Site symmetry	Representations of the site- symmetry group for translations	Induced representations of C _{2v}
н	C _s	Along $x \rightarrow A''$	$A_2 + B_1$
		Along $y \rightarrow A'$	$A_1 + B_2$
		Along $z \rightarrow A'$	$A_1 + B_2$
0	C _{2v}	Along $x \rightarrow B_1$	B ₁
		Along $y \rightarrow B_2$	B ₂
		Along z \rightarrow A ₁	A ₁
		- Rigid translations	$A_1 + B_1 + B_2$
		- Rigid rotations	$A_2 + B_1 + B_2$
		= Vibrations	2A ₁ + B ₂



Symmetric stretch 110.8 THz

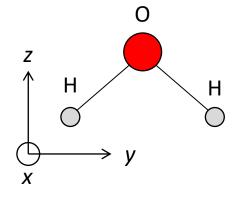


Bending

48.3 THz

H H

Asymmetric stretching 113.8 THz

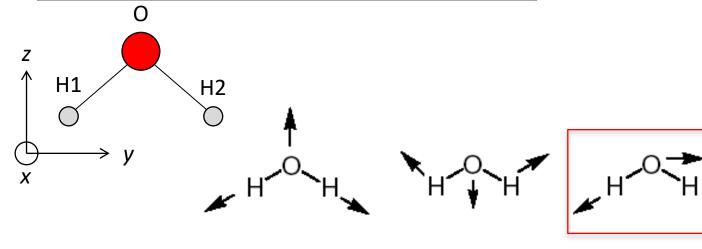


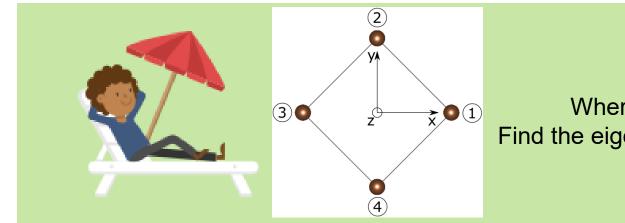
C _{2v} (mm2)	#	1	2 _z	my	m _x	functions
A ₁	Г1	1	1	1	1	z ,x ² ,y ² ,z ²
A ₂	Γ3	1	1	-1	-1	xy,J _z
B ₁	Γ2	1	-1	1	-1	x,xz,J _y
B ₂	Γ4	1	-1	-1	1	y,yz,J _X

	1	2 _z	m _y	m _x
Symmetric stretching A ₁	H ^O H		H ^O H	H ^O H
Bending A ₁				H H
Asymmetric stretching B ₂	H-O-H		H H	H-O-H

	Displacement	Induced representation
	Along x	$A_2 + B_1$
н	Along y	$A_1 + B_2$
	Along z	$A_1 + B_2$
	Along x	B ₁
0	Along y $\rightarrow B_2$	B ₂
	Along z \rightarrow A ₁	A ₁
	= Mechanical rep	$3A_1 + A_2 + 2B_1 + 3B_2$
	- Rigid translations	$A_1 + B_1 + B_2$
	- Rigid rotations	$A_2 + B_1 + B_2$
	= Vibrations	2A ₁ + B ₂

C _{2v} (mm2)	#	1	2 _z	my	m _x	functions
A ₁	Г1	1	1	1	1	z,x ² ,y ² ,z ²
A ₂	Гз	1	1	-1	-1	xy,J _z
B ₁	Γ2	1	-1	1	-1	x,xz,J _y
B ₂	Γ4	1	-1	-1	1	y,yz,J _X





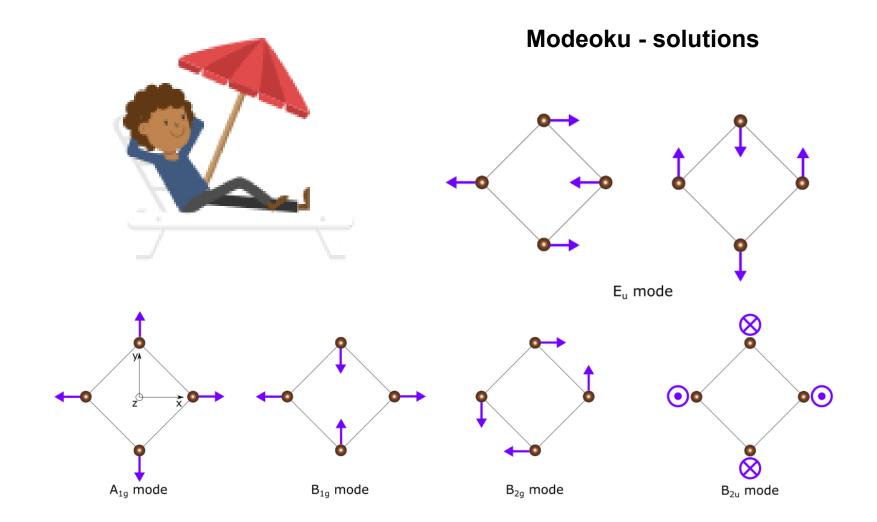
Modeoku

Where are the arrows?... Find the eigenvectors for the 5 modes.

		-	
Ato	Site	Displacements	Induced representations
m	symmetry		
M1	m _z 2 _x m _y	Along x	$A_{1g} + B_{1g} + E_{u}$
		Along y	$A_{1g} + B_{1g} + E_{u}$ $A_{2g} + B_{2g} + E_{u}$
		Along z	$A_{2u} + B_{2u} + E_{g}$
		- Rigid translations	$A_{2u} + E_u$
		- Rigid rotations	$A_{2g} + E_{g}$
		= Vibrations	$A_{1g} + B_{1g} + B_{2g} + B_{2u} + E_{u}$

D _{4h} (4/mmm)	#	1	2	4	2 ₁₀₀	2 ₁₋₁₀	-1	mz	-4	m ₁₀₀	m ₁₋₁₀	functions
Mult.	-	1	1	2	2	2	1	1	2	2	2	•
A _{1g}	Γ ₁ +	1	1	1	1	1	1	1	1	1	1	x ² +y ² ,z ²
A _{2g}	Γ ₂ +	1	1	1	-1	-1	1	1	1	-1	-1	Jz
B _{1g}	Γ ₃ +	1	1	-1	1	-1	1	1	-1	1	-1	x ² -y ²
B _{2g}	Γ ₄ +	1	1	-1	-1	1	1	1	-1	-1	1	ху
Eg	Γ ₅ +	2	-2	0	0	0	2	-2	0	0	0	$(xz,yz),(J_x,J_y)$
A _{1u}	Γ ₁ -	1	1	1	1	1	-1	-1	-1	-1	-1	•
A _{2u}	Γ2 ⁻	1	1	1	-1	-1	-1	-1	-1	1	1	Z
B _{1u}	Г ₃ -	1	1	-1	1	-1	-1	-1	1	-1	1	•
B _{2u}	Γ4-	1	1	-1	-1	1	-1	-1	1	1	-1	•
Eu	Γ ₅ -	2	-2	0	0	0	-2	2	0	0	0	(x,y)

https://upload.wikimedia.org/wikipedia/commons/e/e1/Black_Man_Relaxing_on_the_Beach_Cartoon_Vector.svg



https://upload.wikimedia.org/wikipedia/commons/e/e1/Black_Man_Relaxing_on_the_Beach_Cartoon_Vector.svg

For playing around

- Bilbao crystallographic server <u>http://www.cryst.ehu.es/</u>
 - All data needed for application of the methods, but few explanations on how to use them wisely.
- Species » for symmetry breaking <u>http://palata.fzu.cz/species/</u>
 - Useful to retrieve the consequence of symmetry breaking on domain structures, physical properties etc.
- ISOTROPY Software suite <u>https://stokes.byu.edu/iso/isotropy.php</u>
 - For studies of phase transitions using Landau theory.

For further reading

- M. S. Dresselhaus, *Applications of Group Theory to the Physics of Solids*
 - (Lecture notes) Starts from scratch, very solid and comprehensive.

• Yu and Cardona, *Fundamentals of semiconductors*, Springer, 2001.

- Contains a « pedestrian guide to group theory » that can be very useful for a pragmatic use of group theory applied to vibrations and electronic excitations.
- H. Poulet and J.-P. Matthieu, *Spectres de vibration et symétrie de cristaux*, Gordon and Breach, 1970.
 - Quite comprehensive on lattice vibrations, with useful examples.
- C.J. Bradley and A.P. Cracknell, *Mathematical theory of symmetry in solids*, Oxford University Press, 1972.
 - The Bible, and about as easy to read.