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The primitive unit cell of orthorhombic perovskite (Pnma),
has four formula units ABO; (in total 20 atoms), giving 60
I'-point vibrational modes. Factor group analysis yields to
the following modes:

F['Pmna] = 84, + 10B,, + 8B;, + 108y, + TAS + SBIg
+ 7B, + 5B3, (3)

where TAE + SB]g + TBZg + 5B3g, a total of 24 modes,
are Raman active (Zheng et al. 2004).
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Disclaimers

» (almost no) equation
= (way too much) text

» (almost no) mathematical rigour
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Symmetry operations and notations

Rotations
* Noted n or C, for a rotation by 2rt/n
e Always anti-clockwise

Mirror planes
* Noted m,or 0, u being a normal to the plane

Inversion center

* Noted-lori

* Foramolecule:
e Always at the origin, when it exists
* Unique or non-existant
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Symmetry operations and notations for molecules

Improper rotations or rotoinversion

* Combination of a rotation + inversion

* Noted —n, or S for a rotation by 2n/n

* May leave a molecule invariant even if the rotation and inversion alone do not

B
ARG
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Additional symmetry elements for crystals:

* Translations by lattice vectors

* Skrew axis: Combination of a rotation and a translation along the rotation
axis by a fraction of a lattice vector.

* Glide planes: Combination of a mirror symmetry with a translation parallel
to the mirror plane by a fraction of a lattice vector

Skrew axis

Glide plane

translation | '

reflection

C axis

www.crystallographiccourseware.com/
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Definition of a group

A group is a set, G, together with an operation “0” that combines any two elements a
and b to form another element, denoted a o b or ab, such that the following conditions
are satisfied:

1. Closure:
The combination of two elements of a group must give an element of a group
2. Ildentity element:
There exists one element of the group suchthatao E=Eoa=a
3. Associativity:
The combination of two group elements is associative Ao (BoC)=(AoB)oC
4. Inverse:
Every element has its inverse element (also element of the group).
AoAl=AloA=E

The set of symmetry elements leaving a molecule
or a crystal physically invariant forms a group.
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For crystal symmetry:

* Rotations are limited to 2,3,4 and 6 by the crystallographic restriction
theorem

e 32 crystallographic point groups (+ magnetism - 122)

e 230 crystallographic space groups (+ magnetism - 1651)

For molecular symmetry: no particular restrictions in theory...

* crystallographic point groups

* + point groups for linear molecules

* + point groups for permitted rotation invariance (5-fold, 8-fold etc.)
* + Full rotation symmetry for isolated atoms

O—_.E‘_—‘ acetylene sulfur
C,H, Sg
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Notion of « site symmetry »

Definition
Site symmetry of an atom A = set of symmetry operations that leave this particular
atomic position unchanged

Properties
The site symmetry is described by point group, and is a subgroup of the group of the
crystal or molecule.

Can be found by manual inspection, or in the international tables of crystallography.

Positions

Multiplicity, Coordinates
Wyckoff letter,
Site symmetry

8 d |1 (D x,y,2 (2) X+3.5.2+3 (3) X,y

(5) x,3,2 (6) x+3.5,7+ 3 (7) x, 74
4 c -m. x:%:Z -f‘i‘%,%,Z‘i‘% f,%,z‘ X
4 b |l 0,0, 3,0,0 0,32 7,7,0
4 a T 03010 %303% 01%10 %:Ia%
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For point groups

Schoenflies notation:
suitable for point groups, molecules — used in spectroscopy, chemistry...

Hermann-Mauguin notation (International notation):
suitable for point groups and space groups — used in physics,
crystallography...

Notations for the 32 crystallographic point groups

Schoenflies
Hermann- 1 1 2 m 2/m 222 mm2 mmm 4 4 4/m 422 4mm  42m  4/mmm
Mauguin
I I
Schoenflies
Hermann- 3 3 32 3m 3m 6 6 6/m 622 6mm 6m2 6/mmm 23 m3 432 43m m3m

Mauguin
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C, (for “cyclic”) has an n-fold rotation axis.

C,, (h for “horizontal”) is C, + a mirror plane perpendicular to the axis of rotation.
C,, (v for “vertical”) is C, + n mirror planes containing the axis of rotation.

S,, (for “Spiegel”) contains only a 2n-fold rotation-reflection axis.

C,; has only a rotoinversion axis. Redundant for n>1 but sometimes used.

D, (for “dihedral”, or two-sided) has an n-fold rotation axis plus n twofold axes
perpendicular to that axis.

D, is D, + a horizontal mirror plane and, as a consequence, also n vertical mirror
planes each containing the n-fold axis and one of the twofold axes.

D,, (d for “diagonal”) is D, + n vertical mirror planes which pass between twofold axes
(diagonal planes).

Adapted from https://en.wikipedia.org/wiki/Schoenflies_notation
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T (for “tetrahedral”) has the rotation axes of a tetrahedron.

T, (d for “diagonal”) includes diagonal mirror planes.

T, (h for “horizontal”) includes three horizontal mirror planes. Each plane
contains two twofold axes and is perpendicular to the third twofold axis,

which results in inversion center i.

O (for “octahedral”) has the rotation axes of an octahedron or cube (three 4-
fold axes, four 3-fold axes, and 6 diagonal 2-fold axes).

O, (h for “horizontal”): includes horizontal mirror planes and, as a

consequence, vertical mirror planes. It contains also inversion center and
improper rotation operations.

Adapted from https://en.wikipedia.org/wiki/Schoenflies_notation
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Crystallographic point groups (32)

Piezoelectric (20)

Non piezoelectric
Polar / pyroelectric (10) Non polar

-1, 2/m, mmm, 4/m, 4/mmm,
-3m, 6/m, 6/mmm, m-3, 432,
-43m, m-3m

1,2, m, mm2, 4, 4mm, 3, 3m, | 222, -4, 422, -42m, 32, -6,
6, 6mm 622, -62m, 23, 43m.
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Additional symmetry elements for magnetism:

 Time inversion symmetry: 1’
* Its combinations with spatial symmetry operations:e.g. m+1' =m’

SN ENENNR
s [
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Additional symmetry elements for magnetism:

Time inversion symmetry: 1’
Its combinations with spatial symmetry operations:e.g. m+1' =m’

!

32 + 32 + 58 « Shubnikov » point groups
230 + 230 + 1191 magnetic space groups

Cristallographic groups:

« where 1’ does not exist at all

« where 1’ exists as a symmetry operation (and therefore combines with all
other operations)

« where 1’ does not exist alone but exists in combination with some spatial
symmetry operations
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Magnetic Point Group Tables

bels are presented in the traditional notation - to see them in UNI notation click here)

Choose a magnetic point group from the next table

-1 1 ZSSEl 1 2 B2z 2r B3B8
m’ om S 2mt 2/m GEEEE 2m EEEEN 2
2272 mm2 [ mm21 mm2 [ m'm? 2 mmm
m'm'm m'm'm 4 41" - 4' - -4

a
—
=
=

g
S

4/m 4m' (Sl +/m 2N 422
emm O s B -2
4/mmm1' (ol 4/m'mm [[SEESel 4/mm'm

3
5
+a
3
2

4fmmm

42m1' S0 -42m

]

i,
L M

=

isssay) «/m'm'm (SES8Y 4/mm'm’ 31" -3 47263 311 {7364
32 [{826e) 321 32 ' 3m e -3m1
20373 3m 20474 3w -3m 6 61' -6 [2EEny -1
22381 6 2318 om 6/m1 6Ym 6/m’ 622 [P2g8) 6221
24389 602 24490 627 6mm 6mm¢1 6'mm -6m2 [EEEEEY -6m21’
-6m2 ol -6m2 -6m'2 6/mmm 6/mmm1' BEsHod 6/m'mm

&/mmm’
mf_sl

)
%]
-

27,6405 /'’ 2TA08 6/
80213 21 B08A1E 452
G2 v 2EHEE -5

432

3
o

g

-4'3m’

S
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Magnetic Point Group Tables of 2'/m (#5.3.14) Magnetic Point Group Tables of 2'/m’ (#5.5.16)

Useful data about magnetic point group 2'/m Useful data about magnetic point group 2'/m’

Number of elements of the group (order): 4
This group is centrosymmetric
This group is not polar
This group is compatible with ferromagnetism

Number of elements of the group (order): 4
This group is centrosymmetric
This group is not polar
This group is not compatible with ferromagnetism

Symmetry operations of the group Symmetry operations of the group

N (xyz) form [ matrix form _ [Seitz symbol [N[6xy.2) form[  matrix form _[Seitz symbol
famml(232)] nml(3i8))
R G| sl 75| -
Al 320 ) 2 ;n;;-{';;f;-;z( S ) s
a2 - oz (255 )] -
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Magnetic Point Group Tables of 2'/m (#5.3.14)
But compatible with

Useful data about magnetic point group 2'/m antiferromag netiC OrderS
Number of elements of the group (order): 4
This group is centrosymmetric

This group is not polar
This group is not compatible with ferromagnetism

Symmetry operations of the group

N[(x,,2) form | matrix form [Seitz symbol

1 0 0
1 x!YFZ:I +1 ] 1 ] 1
rnX| my:mz 0O 0 1

-my, my, -m;

-1 0 0
0 1 0O
0 0 -1

_xIYI_ZI _1
My, My, Mz

(
XY,z +1 (
(

)
)
)

)

My, My, -Mz 0 -1

-1 ¢ 0O
4 _KI_YI_ZJ _1 ( o] -1 o]

Marc de Graef, Teaching pamphlet UICr
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Definition of a representation

Given a vector space V, a representation R of a group G is a group homorphism from G
to GL,(V), i.e. a mapping

G - GL,(V)

g > R(g)
where R(g;) is a square n x n matrix, such that

R(g:-g,) = R(g;).R(g))

n is the dimension of the representation.
The basis of a representation is the basis of V used to write its matrices.
The characters of a representation are the traces of its matrices.

Common vector space V in condensed matter physics:

* Quantum states of electrons, nuclei...

e Atomic displacements for vibrations and phase transitions

* Tensor describing physical properties (polarization, magnetization, elastic constants etc.)
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Definition of a representation

Given a vector space V, a representation R of a group G is a group homorphism from G

to GL,(V), i.e. a mapping
G - GL,(V)

g —~ Rl(g)
where R(g;) is a square n x n matrix, such that

R(g:-g,) = R(g;).R(g))

Example for the mm2 point group

z 1 2, m, m,

LT T
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Example: the totally symmetric representation

G - GLy(V)

g —~ (1)
1 2, m, m,,
1 1 1 1

* It always exists.
* All scalar properties transform like it (temperature, entropy etc).
* Itis not « faithful ».
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Reducible vs. irreducible representation

A representation is reducible if the vector space V can be decomposed into
(proper) subspaces stable by all symmetry operations, i.e. all matrices can
be written as:

If this is not possible, the representation is called irreducible (an « irrep »).
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The reducible representation can be reduced into a direct sum of irreducible
representations (« irreps »):

1 2, m, m,
A Ay A Any
s m | e | e
i G Co Coy.

R=AB6pC

dim(R) = dim(A) + dim(B) + dim(C)
X(R) = X(A) + X(B) + X(C)
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The « everything-works-nicely-for-us » theorems

 Maschke’s theorem
« Schur’s lemma
« Wonderful (or great) orthogonality theorem

 The irreps we need are known, tabulated and independant of a particular
choice of basis.

« Every representation can be decomposed into a sum of irreps, and this
decomposition is unique.

« All you need is the character tables.

 The irreps of a group gives you a tool to describe how things transform
under all the symmetry operations of the group.
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bilbao crystallographic server
Contact us About us Publications How to cite the server
Space-group symmetry
Magnetic Symmetry and Applications
Group-Subgroup Relations of Space Groups

Representations and Applications

Point and Space Groups

REPRES Space Groups Representations

Representations PG Irreducible representations of the crystallographic Point Groups

Representations SG Irreducible representations of the Space Groups

Get_irreps Irreps and order parameters in a space group-subgroup phase transition

DIRPRO Direct Products of Space Group Irreducible Representations

CORREL Correlations relations between the irreducible representations of a group-subgroup pair
‘ POINT Point Group Tables

SITESYM Site-symmetry induced representations of Space Groups

COMPATIBILITY RELATIONS Compatibility relations between the irreducible representations of a space group

MECHANICAL REP. Decomposition of the mechanical representation into irreps

Bilbao crystallographic server - http://www.cryst.ehu.es/
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Character tables

Point group symbol Symmetry operations
Grouped by classes

|

—

2; |my | my (functions

1011 |[zx2y2z22

List of irreducible
representations

1 -1 XXz

1
1
1 [ ] xy,
1
1

Y!Y‘erI

|
. / Some basis « functions »:
Mulliken symbol

* X, Y, z: span the vectors, i.e. the translations,
polarization, etc.
o x?%,y%,2%, xy, yz, zx: span spaces of a 2" rank
Koster notation tensors (dielectric constant, Raman tensor...)
Jo dy J;: span the rotations

Bilbao crystallographic server - http://www.cryst.ehu.es/
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Character tables

2; |my | my (functions

1011 |[zx2y2z22

1 -1 XXz

1
1
A, el <[] xy,
1
1

-1 01| vz

Check the orthogonality of the irreps and characters...
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Example: how polarisation transforms
2mm point group

Polarization P = (P,, P, P,)

y

e () ) G )

3-dimensional, reducible representation

Bilbao crystallographic server - http://www.cryst.ehu.es/
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Group theory and representations

Example: how polarisation transforms
2mm point group

2
<Lllarization P=(P,P,P,)
> y
1 ]2 | m | m, 112, | my | m,
P, © ® | ©|® P | 1| -1 1)
—> |~ |« > 1] -1 ] 1
Pttt L]

Bilbao crystallographic server - http://www.cryst.ehu.es/
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Example: how polarisation transforms
2mm point group

1 2, My My Coy(mm2) | # |1 |2, | my | my |functions
Px 1 1 1 1 A I 1011 [zx2y222
Py 1 -1 -1 1
P, 1 1 1 1

3-dimensional, reducible representation

L 4

Decomposition into B, B, ® A,

Bilbao crystallographic server - http://www.cryst.ehu.es/
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Example: how polarisation transform
4mm point group 1 22 42 My | Moy
; Ph1® I®|—> & —
Polarization P = (P,, P, P,)
, P> || ® | —>|®
X
SRR
1 2, 4, m, m.,,
.. -1 .. R -1 . . N
S | A | A | | N

3-dimensional, reducible representation

Bilbao crystallographic server - http://www.cryst.ehu.es/
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il
Example: how polarisation transform Character Table of the group Cay(4mm)*
4mm point group Cqy(4mm) | # 1|2 |4 Imqgp | My 10 functions
Mult. |- [1]1[2]| 2 2 .
. Aq Tep1(1]1] 1 1 7 x2+y2 72
Polarization P = (P,, Py, P) Ay Mol (1] 1| - Jy
B+ Captj 1|1 1 | -1 x2-y2
y B2 Fgf1| 1)1 -1 1 Xy
X E Ms|2/-2|/0| 0O 0 | (xy),(xz,yZ),(Jx.dy)
1 2, 4, m, m,,
P 2 2 10 0, 10
1 1 : 1 1 1

Decomposition into E € A,

Bilbao crystallographic server - http://www.cryst.ehu.es/
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Example: how polarisation transform Character Table of the group Cay(4mm)*
4mm pOint group Cyy(4mm) | # 1] 2 |4 |mqgg | M110 functions
Mult. |- |1[1]2] 2 2 .
A A Fyp1rf11) 1 1 7,x2+y2 72
Polarization P = (P,, P, P,) Ag |F2j1f1 (1] <1 | J,
B1 M1 11| 1 -1 x2-y2
y Bz (a1 1[-1] 1 | 1 xy
X E lNg|2|-2|/0| O 0 | (xy),(xz,yZ),(Jx.dy)

P transforms like E @ A, ...

This representation contains the totally symmetric irrep A, ...

There is at least one component of P that is invariant under all symmetry
operations of the group...

4mm allows for the existence of a permanent polarization.

Bilbao crystallographic server - http://www.cryst.ehu.es/
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Is piezoelectricity (linear coupling between Polarization and Strain) allowed?

axPxS?

For the 4mm point group:

« P transforms like A, + E

« S transforms like 2A, + B, + B, + E

* The product transforms like A1 + ..., i.e. contains A1 => YES!

For 422 point group:

« P transforms like A, + E (non polar group)
« S transforms like 2A, + B, + B, + E

« Also YES!

Write your own Landau potential with all
the weird symmetry-allowed coupling
you can think of... piezoelectric,
magnetoelectric, piezomagnetic...

(You may stop at the 17t order)
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For representations

Mulliken symbol:
Suitable for molecular vibrations and lattice vibration at the I'-point -> suitable for
Raman and infrared spectroscopy

Koster / BSW notations:

Suitable for the description of symmetries of phonons (or other phenomena) in
the whole Brillouin zone -> necessary for theoretical solid state physics, neutron
scattering...

mm2 (C,,) E C, o, 02
222 (DZ) E sz Czy sz

A, I, A r, 1 1 1 1

B, T, | B TI,|1 -1 -1 1

A, Ty | B, T, | 1 1 -1 -1

B, I, | B TI,|1 -1 1 -1

mmm =222 Q 1(D,, = D, ®@ C)

Bradley & Cracknell, The mathematical theory of symmetry in solids, Clarendon Press, 1972.
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Meaning of the Mulliken symbol

A (one dimensional) symmetric with respect to rotation of the principle axis
B (one dimensional) anti-symmetric with respect to rotation of the principle axis
E doubly degenerate or two dimensional
T (or F) thirdly degenerate or three dimensional
Subscript 1 symmetric with respect to the C,, principal axis, if no perpendicular axis, then it is with respect to o,
Subscript 2 |anti-symmetric with respect to the C, principal axis, if no perpendicular axis, then it is with respect to o,
Subscript g symmetric with respect to the inverse
Subscript u anti-symmetric with respect to the inverse
prime symmetric with respect to g, (reflection in horizontal plane)
double prime anti-symmetric with respect to g, ( opposite reflection in horizontal plane)

R. S. Mulliken, J. Chem. Phys 23, 1997 (1955); J. Chem. Phys. 24, 1118 (1956); Adapted from hiip://chemwiki.ucdavis. edu/.
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Irreps of space groups

» Labelled by k-vector, with names for special points of the Brillouin zone

bilbao crystallographic server

Contact us About us Publications How to cite the server
Space-group symmetry
GENPOS Generators and General Positions of Space Groups
WYCKPOS Wyckoff Positions of Space Groups
HKLCOND Reflection conditions of Space Groups
MAXSUB Maximal Subgroups of Space Groups
SERIES Series of Maximal Isomorphic Subgroups of Space Groups
WYCKSETS Equivalent Sets of Wyckoff Positions

NORMALIZER Normalizers of Space Groups

~ KVEC The k-vector types and Brillouin zones of Space Groups

SYMMETRY OPERATIONS Geometric interpretation of matrix column representations of symmetry operations
IDENTIFY GROUP Identification of a Space Group from a set of generators in an arbitrary setting

Bradley & Cracknell, The mathematical theory of symmetry in solids, Clarendon Press, 1972.
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© bilbao crystallographic server

hitp:ifwww.cryst.ehu.es
Fig. 3.13. The Brillouin zone for I',. T = (000); X = (030); M = (}}0); R = (34}).

Bradley & Cracknell, The mathematical theory of symmetry in solids, Clarendon Press, 1972.
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The k-vector types of space group /44/a (88)

Brillouin zone
( Diagram for arithmetic crystal class 4/ml : c/a=1)
14/m-C4,° (87), 144/a-C 410 (88)

Reciprocal-space group ( 14/m )*, No. 87 : c*/a*<1

The table with the k vectors.

© bilbao crystallographic server

http:/fwww.cryst.ehu.es
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» Differences in notations (Koster, BSW, Mulliken...).

Table 2.4. Commonly used notations for the nreducible representations of the 7T, point

group
Koster notation? BSW notation Molecular notation
I I Ai
I, I Ay
15 IAT) E
Iy I'is T
I Iss T,

4 Note that [y and [5 are sometimes reversed in the literature. We recommend the stu-
dent to check it whenever he encounters this notation [2.4].

E Cy. o O
222 (D,) E C: Cy Cax
A I, 1 1 I 1
B, T, 1 -1 -1 1
B, I, l 1 -1 -1
B, I, 1 =1 I -1

Yu and Cardona / Bradley and Cracknell.
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» Differences in notations (Koster, BSW, Mulliken...). .
= Some arbitrariness

= in the choice of coordinate system

= in the choice of a particular setting for a space group

B1u « BZu
B1g « BZQ Co,(mm2) | # 1 2; | my | my |functions
A 1 10111 z.x2y2 .72
z pr[malt[ 1] xy;
By ) NEIRRE X, XZ,Jy
B2 F4T-1 11| yyzdg




Classification and notations

UNIVERSITE DU
LUXEMBOURG

» Differences in notations (Koster, BSW, Mulliken...). .g

= Some arbitrariness
= in the choice of coordinate system
= in the choice of a particular setting for a space group

Pnma vs. Pbnm(62) in tilted perovskites s,
CaTiO,, GdFeO,, TbMnO, o

)
PLa og / D
L] Mn ‘é u \‘Bég
201
Q02 e e

Smirnova, Physica B 262, 247 (1999)



Subduction and crystal field splitting

Supergroup G Subgroup F

« subduction »

wepsorc [ oo F

« induction »
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Examples of « subduction »

functions

szvyz!zz functions

K-}“IW-J_Z 1 xryrxzryzrzzrxyr‘]z

XX2Z,Jy ' zxz,yz,Jx.Jy

¥.yzZ,Jx
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Examples of « subduction »
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Cyqv(4mm) | # 12 My functions Cov(mm2) | # 1 2; | my | my | functions
Mult. | - [1]1 2] 2 A Tl 11 1 zx2y2 2
A4 4 T 1 1 z,x2+y2 72 Ay M T 10-1]-1| xyJdz
A, (Mal1]1 0] J; By Mo|1]-1]1|-1] xxzdy
Bi |Ms3|1]1 54 1 x2-y2 By (Tal1]-1]-1] 1] vyzdy
B, |Mal1|1 4 -1 Xy
ETs2]-200 0 L8] xy).02y2).(xdy)




Subduction and crystal field splitting

Example: d orbitals (L=2) of a transition metal ion in a cubic environment

Supergroup: SO(3) Subgroup: m-3m
Group of the isolated ion Group the ion in the octahedron

‘ All rotations are lost except 4, 2, 3, 2’
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Onp(m-3m) | # 1]a|2|3|2|-1]-4|m|-3]m functions
Mut. | - |16 (3[8[6|1 /6|3 8]6
Mg Il 1] xey2az
N E R R EIR IR R

| I P DU P PR B P P P P

Problem:
What is the effect of the symmetry lowering experiences by the ion on the degeneracy

of its energy levels?

Method:
e (Calculate the characters of the preserved symmetry operations.

* Reduce the obtained representation
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On(m-3m) | # 1]a]2]3 2 -1|4|m|-3|m' functions
Mut. | - [1]6|3]8[6/1]6]38]6
Mg el 1]1] xeey2e
n
"
n

1 (x,y,2)
'1 (Jm J‘_y' 1 JZ)

2
3 0 0
L2 5 T X 3
3 0 0
3 0 0




Subduction and crystal field splitting

Isolated ion T, Cubic crystal field

Which level is higher/lower depends on the special configuration.
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Correlation relation for group-subgroup pairs

Further symmetry lowering?

m-3m ~-3m 3m
Ex; LaN|O3, BlFeO3... Avg At Aq
A1y A1y Az
AZg AQg Az
22 - mm2 mmim
om Bl 4mmm 3 Ay Aoy A1
c EE om 622 ___—
122 Tl <o m-3m <] B Es E
E, E, E
C4(1) 1 48
Tig Azg+ Eq A+ E
g
[ Subduction tables] +— |
Ty Agy + By A1+E
Tag Aig+ Eq Ai+E
Tay Ay + By Az +E
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Splitting of energy levels for Fe in BiFeO,

(c)
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&
—
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Bai et al., J. Solid. State Chem. (2016)
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If:

- the final state transforms like the irrep '

- the initial state transforms like the irrep '™
 the perturbation transforms like the irrep ")

then the matrix element
/
(Prinat|H'|@initiar)

transforms like the direct product

M x FH) x 0

For the transition probability to be non-zero, the direct product must contain the
fully symmetric representation, i.e. contain a term that will not vanish upon all
symmetry operations of the system.
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What are the states accessible from T,, by an electric dipole transition?

T1u X TZg = A2u + Eu + T1u + T2u

_— \

Symmetry of the

Perturbation (electric field) Symmetry of the initial state

Transitions from T, states can only be to/from states with A, , E, T,
or T,, symmetry. Optical transitions between E, and T,, are forbidden
(in principle...)
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The mechanical representation = the representation generated by atomic
displacements.

How do atomic displacements transform under the symmetry operations of
the group?

How to decompose the displacements onto a symmetry-adapted basis?

H,O molecule:

O Point group C,, = mm2 = {E, 2,, m,, m}
5 N = 3 atoms
H1 o [ is a 9-dimensional representation.

=> the mechanical representation
Canonical basis vectors for atomic displacements:

X e1 = UX(O) e4 = ux(H1) e? = ux(H2)
e,=u/l(O) e;=u/ (H1) ez=u,(H2)
eB = UZ(O) e6 = uz(H1) eg = uz(H2)



The mechanical representation

Example:

____________________________________________

________________________________________________
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Reduction of the representation I

« Decompose the vector space in subspaces that are stable by all symmetry

operations. »

Reduce the 3N-dimensional reducible representation of the point group into a
direct sum of irreducible representations.

Different approaches:

e Calculation of the characters, orthogonality theorem etc.
* The correlation method, well-adapted to the vibration problem.

W. G. Fateley et al., Infrared and Raman Selection Rules for Lattice Vibrations: The Correlation Method, Applied Spectroscopy 25, 155 (1971)
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Basic idea of the correlation method

Consider a molecule with point group G and one of its atoms with site

symmetry F.
@ Uy

V4

X y

The oscillation of the atom around its equilibrium position is represented by
a vector; it transforms according to irreps of F associated to translations.

The idea of the correlation method: determine how of this symmetry
property is transfered to the symmetry of the whole molecule.

W. G. Fateley et al., Infrared and Raman Selection Rules for Lattice Vibrations: The Correlation Method, Applied Spectroscopy 25, 155 (1971)
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General recipe

Ingredients:

e Structure of the molecule (for a crystal: space group and atomic — Wyckoff positions)
e Character tables of point groups

e Correlation tables

Recipe:

Identify the point group of the molecule

Determine the number of degrees of freedom

Determine the site symmetries for each atom in the structure

Find the representations of the site symmetry point group associated to translations
Find the induced representations for the molecule

Sum over all (symmetry independent) atoms

Take off rigid translation and rotations

NoubkwnNE
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1. Find the point group of the molecule

START

N ¥

Dees it have twe or mere Y Does it have a centre | Y
Caxes with 27 of inversion?

V4 N N
H H N | bees it have a &, axis? Y Does it have a centre| Y o

of inversion?
N
Does it havea |7 Does it havea | ¥
y mirror plane? @ Cg axis?
X
Does it have a centrel ¥ Are there n G axes y
of inversion? perpendicular to the
principal axis?
M
|N
Iz there a horizental Iz there a herizental
mirror plans? mirror plane?
M
Are there n vertical Are there n dihedral
mirror planes? mirrer planes?
™

?

Is there an S,
axis? @

]

C,, =mm2=mm,2,




The correlation method

UNIVERSITE DU
LUXEMBOURG

2. Find the number of degrees of freedom o)

3 atoms - 3 x 3 = 9 degrees of freedom H H
- 3rigid translations

- 3rigid rotations

- 3 vibration modes X

3. Find the site symmetries for all symmetry independent atoms

2 symmetry independent atoms:
O atom: {E, 2, o,, 0,} = site symmetry = C,, =mm2 =mm 2,

H atom: {E,X GX’XV} - site symmetry=C,=m=m,



The correlation method

UNIVERSITE DU
LUXEMBOURG

4. Find the representations of the site symmetry point groups associated to translations.

Cs(m)| # |1 |m functions R(T,) + R(T,) + R(T,) = 2A" + A”
H atoms: — T
5 — Translations in the mirror plane
1 -zr-x-zryl'zr\J)':r‘JyII
Translation perpendicular to the mirror plane

Coy(mm2) | # 2, |my | my | functions R(TX) + R(Ty) + R(Tz) =B, +B, + A

\

A M 1011 |zx2y2z2

Translations
1) Inthe mirror planes
2) perpendicular to the rotation axis

O atom:
Site symmetry C,,

Translation along the rotation axis
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5. Find the induced representations of the point group of the molecule

Correlation tables for C,,

Oatom:B, +B, + A;
Sit symmetry =symmetry of the molecule
No change!

B, +B,+A,

H atoms: 2A" + A” 4
Correlation between C,, and C.: H

A > A +B,

A” > A, +B, y
) 2A, + A, + B, + 2B, X
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lllustration of > A, + B,

2; |my | my (functions

Cs(m) | # |1 |m functions 1011 |zx2y2z2

1
1
A, el <[] xy,
1
1

1
AI' r‘1 1 1 x!y!xz!yz!zz!xy!‘lz
1

A L[] xxzdy

erzryervay

-10-1 11 | yyzdy

Displacements of H atoms along z:

b |

A A, B,



The correlation method

6. Sum over all atoms

) . =3A, +A, + 2B, + 3B,

7. Take off rotations and translations
Mol = 3A; + A, + 2B, + 3B,

otal —

Coy(mm2) | #

2; |my | my | functions

1

1011 1 z,x2 y2 z2
11 (<11 ] xy,
1
1

A1 | xxedy

Y.yZ.Jx

- I-vibrations = 2Al + BZ

UNIVERSITE DU
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NB: 3+ 1+ 2+ 3 =9 degrees of freedom

Translations (x, vy, z):
I_translations = Bl + BZ + Al
Rotations (J,, J,, J,):

r =B,+B; +A,

rotations
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Summary of the procedure and results:

Site Representations of the site- Induced representations of C,,
symmetry symmetry group for
translations
H C, Along x > A” A, + B,
Alongy > A’ A, + B,
Alongz > A’ A, +B,
o G, Along x - B, B,
Alongy - B, B,
Alongz > A, A,
- Rigid translations A +B, +B,
- Rigid rotations A,+B, +B,
= Vibrations 2A, + B,

}

H O T TaTa
~ LN Y V4 =
Symmetric stretch Bending Asymmetric stretching

110.8 THz 48.3 THz 113.8 THz
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Coy(mm2) | # T2Z my | My | functions
z A1 Fi1[1]1]1 [zx2y222
H H Ao Fal1]1]-1[-1] xydy
B1 Fo1|-1]1 [-1] xxzdy
X / B2 Fa|1|-1[-1|1 | vyzJg
1 2, m,, m,
Symmetric + + + +
stretching O O O POy
A, AT Il I 47 I I
Bending *® | x FE AN | x ;4
A, H’?“H H’?“H H’?"‘H H’?"‘H
Asymmetric — - - —
stretching H"O"‘“H H” O\H H"’O\H H/O\'H
8, # ~|# |7 |4 *




The mechanical representation

UNIVERSITE DU
LUXEMBOURG

Displacement Induced representation
Along x A, + B, —
H Alongy A, + B, Coy(mm2) | # l 2; |my | my |functions
Along z A, +B, A Fi1[1]1]1 [zx2y222
Along x B, —
O Alongy->B, B, A2 M3 111 Xy-Jz
Alongz - A, A, B Fof1]-1]1 [-1] XXZJy
- i + + + —
Mechanicalrep  3A, +A, + 2B, + 3B, B, Fal1l <111 | yyzds
- Rigid translations A, +B, + B,
- Rigid rotations A, +B, +B,
= Vibrations 2A, +B,
@
Z
H1 H2
y —-
X A0 * O 7 AL
H H H Y H H H
Vs N >~ =,
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Modeoku
Where are the arrows?...
Find the eigenvectors for the 5 modes.

Dgp(4/mmm) | # (1|2 |4 2100 |21-10 -1 |Mz|-4 |[Mygp | Mq.1g| functions
Mult. -l1f1l2) 2| 2 j1l1]2] 2 | 2
SR L K N O R O B A T O T x2+y? 72
Ato | Site Displacements Induced representations Aog (11| -1 11 1] 1 | -1 J,
m__ | symmetry Big M| 1[1]-1] 1 | -1 (1|1 1 | x2-y2
M1 | m,22,m Along x A,+B, +E
Y Al Ag Bg E“ Bag a1 1| 1 1)1 (1] 1 Xy
ongy 26T Byt Ey
Along z A, +B, +E, Eq rs*(2|-2/0| 0o | 0 (2(22|0] 0 0 |(xzyz),(Jxdy)
- Rigid translations A, +E, A1y ref1f1]1] 1 1 04lalal a4l o4
- Rigid rotations A, +E, A Y Y P P P R Y P Y I ] z
N . 2| - - - b=t
= Vibrations A, +B, +B, +B, +E, : 2
By P11 -1 1 | -1 a-1]1] -1 1
Bou o111 1 1 a1 1 | -1
Eu s |2|-2(0] o | 0 2/2/0| 0 | O xy)

https://upload.wikimedia.org/wikipedia/commons/e/e1/Black_Man_Relaxing_on_the Beach_Cartoon_Vector.svg
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Modeoku - solutions

E, mode
X
® ®
X
Ay mode Big mode B, mode B,, mode

https://upload.wikimedia.org/wikipedia/commons/e/e1/Black_Man_Relaxing_on_the Beach_Cartoon_Vector.svg
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For playing around

= Bilbao crystallographic server http://www.cryst.ehu.es/

= All data needed for application of the methods, but few explanations on how to use them wisely.

» « Species » for symmetry breaking http://palata.fzu.cz/species/

= Useful to retrieve the consequence of symmetry breaking on domain structures, physical
properties etc.

= |[SOTROPY Software suite https://stokes.byu.edu/iso/isotropy.php

» For studies of phase transitions using Landau theory.



http://www.cryst.ehu.es/
http://palata.fzu.cz/species/
https://stokes.byu.edu/iso/isotropy.php
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For further reading

M. S. Dresselhaus, Applications of Group Theory to the Physics of Solids

= (Lecture notes) Starts from scratch, very solid and comprehensive.

Yu and Cardona, Fundamentals of semiconductors, Springer, 2001.

= Contains a « pedestrian guide to group theory » that can be very useful for a pragmatic use of group theory
applied to vibrations and electronic excitations.

H. Poulet and J.-P. Matthieu, Spectres de vibration et symétrie de
cristaux, Gordon and Breach, 1970.

= Quite comprehensive on lattice vibrations, with useful examples.

C.J. Bradley and A.P. Cracknell, Mathematical theory of symmetry in solids,
Oxford University Press, 1972.

= The Bible, and about as easy to read.
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