

Institut d'Etudes Scientifiques de Cargèse 20130 Cargèse, Corse (France) - https://iesc.universita.corsica

Relaxor: what is it good for?

Brahim Dkhil

University Paris-Saclay, CentraleSupélec, CNRS-UMR8580, Labo SPMS France

UNIVERSITE PARIS-SACLAY

Someone who practices yoga?

A sort of veggie diet?

Someone who practices yoga?

A sort of veggie diet?

Someone who practices yoga?

Or something else?

Me in Cargèse?

Menu

Some basics and ingredients

Electric field effect

The Physics behind

Applications

Normal Ferroelectric to Relaxor Ferroelectric

- Sharp narrow $\epsilon^\prime(T)$ peak
- Structural phase transition . with macroscopic change at Tc

- No structural phase transition across $\mathrm{T}_{\mathrm{max}}$

- Very broad $\varepsilon'(T)$ anomaly

Relaxor ingredients

• Organic-like :

irradiated vinylidene fluoride-trifluoroethylene copolymers (P(VDF-TrFE))

• Inorganic-like : - Tungsten bronze structure-type :

 $Sr_xBa_{1-x}Nb_2O_6$ (SBN), ...

- Perovskite structure-type : the most studied

PbMg_{1/3}Nb_{2/3}O₃ (PMN), PbSc_{1/2}Nb_{1/2}O₃ (PSN), Na_{1/2}Bi_{1/2}TiO₃ (NBT), BaZrTiO₃ (BZT)...

Need of chemical disorder... and some "local" order

Case of Pb(BB')O₃

Co	mpound	B-site ordering		
PbC	0 _{1/2} W _{1/2} O ₃	ordered		
PbM	$[g_{1/2}W_{1/2}O_3]$	ordered		
PbY	b _{1/2} Nb _{1/2} O ₃	ordered		Normal ferroelec
PbI	n _{1/2} Nb _{1/2} O ₃	ordered or disordered		
PbI	$n_{1/2}Ta_{1/2}O_3$	ordered or disordered		
PbS	c _{1/2} Nb _{1/2} O ₃	ordered or disordered		Polavor forroolog
PbS	$c_{1/2}Ta_{1/2}O_3$	ordered or disordered	Ŧ	
PbM	g _{1/3} Nb _{2/3} O ₃	disordered		
PbZ	n _{1/3} Nb _{2/3} O ₃	disordered		
PbM	(g _{1/3} Ta _{2/3} O ₃	disordered		

ctric

ctric

"space charge" : $B = Mg^{2+}$, $B' = Nb^{5+}$

 $\Rightarrow \{Pb(Mg_{1/2}Nb_{1/2})O_3\}^{-} \equiv random \ electric \ field \ (RF)$

Need also for some polar order/disorder

« Butterfly » Diffuse scattering *Polar NanoRegions (PNR)*

Need also for some polar order/disorder

Kim et al., Adv. Mater. 2019, 1901060

Richness of local polar state: labyrinth domains, no needle-like domains motion

Richness of local polar state: domain branching

Existence of T_f

From relaxor to normal ferroelectric through Morphotropic Phase Boundary (MPB)

Application interest: Giant piezoelectricity

Morphotropic Phase Boundary

 $\begin{array}{ll} \mbox{PZN-4.5\%PT } d_{33} \mbox{2200pC/N$; k_{33}\mbox{$^92\%$} \\ \mbox{PMN-33\%PT } d_{33} \mbox{2200pC/N$; k_{33}\mbox{$^94\%$} & Quartz } d_{33} \mbox{2.3pC/N$; k_{33}\mbox{$^10\%$} \\ \mbox{PYN-46\%PT } d_{33} \mbox{2500pC/N$; k_{33}\mbox{$^96\%$} & BaTiO_3 } d_{33} \mbox{$^190pC/N$; k_{33}\mbox{$^52\%$} \\ \mbox{Pb(ZrTi)O_3 (PZT) type VI } d_{33} \mbox{$^690pC/N$; k_{33}\mbox{$^79\%$} \\ \end{array}$

Application interest: Giant piezoelectricity

 $\begin{array}{ll} \mathsf{PZN-4.5\%PT} \ d_{33} \sim \mathbf{2200} \mathsf{pC/N} \ ; \ k_{33} \sim 92\% \\ \mathsf{PMN-33\%PT} \ d_{33} \sim \mathbf{2200} \mathsf{pC/N} \ ; \ k_{33} \sim 94\% & \mathsf{Quartz} \ d_{33} \sim 2.3 \mathsf{pC/N} \ ; \ k_{33} \sim 10\% \\ \mathsf{PYN-46\%PT} \ d_{33} \sim \mathbf{2500} \mathsf{pC/N} \ ; \ k_{33} \sim 96\% & \mathsf{BaTiO}_3 \ d_{33} \sim \mathbf{190} \mathsf{pC/N} \ ; \ k_{33} \sim 52\% \\ \mathsf{Pb}(\mathsf{ZrTi})\mathsf{O}_3 \ (\mathsf{PZT}) \ \mathsf{type} \ \mathsf{VI} \ d_{33} \sim \mathbf{690} \mathsf{pC/N} \ ; \ k_{33} \sim 79\% \end{array}$

Application interest: Giant piezoelectricity

BaTiO₃ d₃₃~**190**pC/N ; k₃₃~52%

Pb(ZrTi)O₃ (PZT) type VI d₃₃~690pC/N ; k₃₃~79%

Curie temperature (°C)

Saito, Nature 432, 84 (2004)

Application interest: Huge electrostriction

Induced-phase in MPB region: role of nanoscale polar clusters

Krogstard et al. Nature Mater. 2018

Mimicking « relaxor » bahaviour using multilayers

Role/importance of Pb: Pb(MgNb)O₃ versus Ba(TiZr)O₃

PMN

BZT

A. Al Barakaty, Phys. Rev. B 91, 214117 (2015)

S. ProsandeevJ. Phys. Cond. Matter. 27, 223202 (2015)
S. Prosandeev, Phys. Rev. Lett. 110, 207601 (2015)

Menu

Some basics and ingredients

Electric field effect

The Physics behind

Applications

Electric-field-induced ferroelectric phase

Polarization and dielectric constant obtained under electric field applied along [111]

A cooperative long-range ordered ferroelectric state is induced if the electric is higher than a threshold value ($E_t \sim 1.7 \text{ kV/cm}$ along [111])

The incubation time τ is strongly dependent on both the temperature and the electric field strength

Critical end-point and super-criticality

Menu

Some basics and ingredients

Electric field effect

The Physics behind

Applications

Summary of the needed ingredients for relaxors

Perovskite Pb-based-Relaxors (Smolenskii, 1958)

 $(\mathsf{PbMg}_{1/3}\mathsf{Nb}_{2/3}\mathsf{O}_3, \mathsf{PbZn}_{1/3}\mathsf{Nb}_{2/3}\mathsf{O}_3, \mathsf{PbSc}_{1/2}\mathsf{Nb}_{1/2}\mathsf{O}_3, ...)$

This is not a PFM image and does not correspond to reality!!!! "Static/Dynamic???" PNRs appear at T_{Burns} [Burns et al., PRB83, Jeong et al., PRL04] and they freeze down (or phase transition) at $T_{freezing}$ (T_c) [Viehland et al., PRB91, Westphal et al., PRL92]

• The first one [Smolenskii, JPSCS, 70] : concept of « polar microregions » within chemical inhomogeneity theory (static model)

• The first one [Smolenskii, JPSCS, 70] : concept of « polar microregions » within chemical inhomogeneity theory (static model)

• From superparaelectric [Cross, Ferroelectrics, 87] to dipole glass [Viehland, PRB, 91]

• The first one [Smolenskii, JPSCS, 70] : concept of « polar microregions » within chemical inhomogeneity theory (static model)

• From superparaelectric [Cross, Ferroelectrics, 87] to dipole glass [Viehland, PRB, 91]

• Quenched random fields [Westphal, Kleemann et al., PRL, 92] arising from space charges associated to chemical inhomogeneities

• The first one [Smolenskii, JPSCS, 70] : concept of « polar microregions » within chemical inhomogeneity theory (static model)

• From superparaelectric [Cross, Ferroelectrics, 87] to dipole glass [Viehland, PRB, 91]

• Quenched random fields [Westphal, Kleemann et al., PRL, 92] arising from space charges associated to chemical inhomogeneities

• Unifying "hybride" model [Pirc, Blinc, PRB, 99] : Spherical Random Bond Random Field model (SRBRF) = extension of Ising models

$$H = -\frac{1}{2} \sum_{ij} J_{ij} \vec{S}_i \cdot \vec{S}_j - \sum_i \vec{h}_i \cdot \vec{S}_i - g \sum_i \vec{E}_i \cdot \vec{S}_i$$

Random bond interaction Effective local field (length varies)

• The first one [Smolenskii, JPSCS, 70] : concept of « polar microregions » within chemical inhomogeneity theory (static model)

• From superparaelectric [Cross, Ferroelectrics, 87] to dipole glass [Viehland, PRB, 91]

• Quenched random fields [Westphal, Kleemann et al., PRL, 92] arising from space charges associated to chemical inhomogeneities

• Unifying "hybride" model [Pirc, Blinc, PRB, 99] : Spherical Random Bond Random Field model (SRBRF) = extension of Ising models

$$H = -\frac{1}{2} \sum_{ij} J_{ij} \vec{S}_i \cdot \vec{S}_j - \sum_i \vec{h}_i \cdot \vec{S}_i - g \sum_i \vec{E}_i \cdot \vec{S}_i$$

Random bond interaction Effective local field (length varies)

What else....

Phys. Rev. B 80, 064103 (2009)

T* was overlooked in previous data...

A. Naberezhnov et al., EPJB1999, P.M. Gehring et al., PRL2001, S. Wakimoto et al., PRB2003, J. Hlinka, PRL2006,

T* was overlooked in previous data...

A. Naberezhnov et al., EPJB1999, P.M. Gehring et al., PRL2001, S. Wakimoto et al., PRB2003, J. Hlinka, PRL2006,

Comparison with other "super" condensed matter systems

Interestingly (in Colossal MagnetoResistance, High-Temperature SuperConductor, Diluted Magnetic Semiconductors)

> A 400 т 300 4/mmm Non-Fermi-Liquid T(K) Immm 200 CO LRO Fermi-Liquid Pseudo-Gap No AF. Type A Type C/C AFM AFI AF 0.30 0.40 0.50 0.60 0.70 0.80 0.90 SG x in SrO.(La1-Sr MnO3)2 D 60 С M-Po Ttilt Ca_{2-x}Sr_xRuO₄ 100 50 Paramagnetic Paramagnetic metal metal 40 TFL 10 L (K) ¥ ₽30 AF correlated Charge ordered insulator Curie-Weiss 20 Unconventional metal H_oO Intercalated superconductor 10 Superconductor Magnetic neta Order 0.1 0 0.5 1.5 2/3 3/4 1/4 1/3 1/2 0 Ca x (Sr) Sr Na Content x E 80 $-O - P^{c}_{1}(T) - O - P^{c}_{2}(T)$ 70-Mo Semiconductor 60-NFL Bad metal (ع)⁵⁰ ⊢ PG FL Mott nsulate 30

> > AFM

P_c 0

P*

Ρ

Fermi liquid

500 600 700

800

20

10+

A.F

insulator

100

200 300

400

P (bar)

х

[E. Dagotto, NJP05, Science05]

Comparison with other "super" condensed matter systems

Interestingly (in Colossal MagnetoResistance, High-Temperature SuperConductor, Diluted Magnetic Semiconductors)

1) "Colossal/Giant effect" was reported, also for relaxors, huge electostriction/giant piezoelectricity

2) Nanoclusters appear at T*, also in relaxors

[E. Dagotto, NJP05, Science05]

Spontaneously breaking of continuous symmetry

Important in many branches of physics: superconductors, superfluids, ... and even Higgs boson.

Amplitude/Higgs Modes in **Condensed Matter Physics**

Physicists are looking for connections be cosmic Higgs boson, discovered in a par and its tabletop cousins.

Physicists are looking for connections be

David Pekker¹ and C.M. Varma² Annu. Rev. Condens. Matter Phys. 2015. 6:269-97

ARTICLE COLLIDER

Energy scale: $1.25 \times 10^{11} \text{ eV}$ Permeates the Universe and gives rise to mass in other particles.

BOSE-EINSTEIN CONDENSATE

Energy scale: 4×10^{-13} eV Exists as a Jiggling in the field describing the shared quantum state of a cloud of atoms.

SUPERCONDUCTOR

Energy scale: 0.002 eV Exists as a jiggling in the field describing how superconducting electrons pair up.

Energy scale: Up to 0.0012 eV Exists as a jiggling in the magnetic ordering of atomic spin states.

E.S. Reich, Nature2013

Can relaxor be invited at this table?

eV. electronvolt.

Are relaxors relatives to Higgs via a spontaneous breakdown of continuous symmetry?

Gazit et al., PRL2013

Goldstone and Higgs modes

Dynamic order parameter $\Phi = I \Phi I e^{i\phi}$ near a quantum phase transition between an ordered ($I \Phi I \neq 0$) and a disordered phase ($I \Phi I = 0$).

Collective modes or 'giant matter wave' with spectacular frictionless flow properties appear (Bose–Einstein condensation) emerge

Are relaxors relatives to Higgs via a spontaneous breakdown of continuous symmetry?

Gazit et al., PRL2013

Goldstone and Higgs modes

Dynamic order parameter $\Phi = I \Phi I e^{i\phi}$ near a quantum phase transition between an

ordered ($I\Phi I \neq 0$) and a disordered phase ($I\Phi I = 0$).

Munoz, Rev. Mod. Phys. 90, 031001 (2018)

Collective modes or 'giant matter wave' with spectacular frictionless flow properties appear (Bose–Einstein condensation) emerge

A spontaneous broken continuous symmetry at T_B?

Gram-Charlier treatment [Kiat et al. JPCM99] Probability Distribution Function for Pb

Below T_B, ALL Pb ions are displaced (Mexican hat potential) Prosandeev, Phys. Rev. B 102, 104110 (2020)

A spontaneous broken continuous symmetry at T_B?

Below T_B, ALL Pb ions are displaced (Mexican hat potential) Prosandeev, Phys. Rev. B 102, 104110 (2020)

Help from modelling: SuperHamiltonian

A. Al Barakaty, Phys. Rev. B **91**, 214117 (2015)

Back to Higgs and its Mexican hat...

Modeling

Experiment

Prosandeev, Phys. Rev. B 102, 104110 (2020)

We have the Mexican hat, where are the collective excitations?

Prosandeev, Phys. Rev. B 102, 104110 (2020)

Menu

Some basics and ingredients

Electric field effect

The Physics behind

Applications

Relaxor applications

Giant piezoelectric

Strong electrostrictive Huge dielectric Relaxor Large tunability High energy storage

Significant electrooptics

Big pyroelectric

Strong electrocaloric

Context Von Neumann <u>digital and sequential</u> architecture

Neuromorphic analog and parallel architecture

Bio-inspired neuromorphic computing

Long Term Potentiation (strengthening = learning)

Long Term Depression (weakening = forgetting)

MemRistor, memCapacitor, memInductor to mimick synapses

Tian, et al., Nature Comm. 7, 11502(2016), Adv. Electron. Mater. 5, 1800600 (2019)

 $V_{\rm G}\left({\rm V}\right)$

Yan et al., Adv. Electron. Mater7, 2001276 (2021), Appl. Phys. Rev. 9, 021309 (2022)

Yan et al., Adv. Electron. Mater**7**, 2001276 (2021), Appl. Phys. Rev. **9**, 021309 (2022)

Relaxor-based Synapse: Reminder

Relaxor-based Synapse: Reminder

Exploit the flat energy landscape of relaxor-based systems

The main element

Exploit the flat energy landscape of relaxor-based systems

The main element

Exploit the flat energy landscape of relaxor-based systems

MemRistor, memCapacitor, memInductor to mimick synapses

Tian et al., Exploration, 20220126 (2023)

Exploit the flat energy landscape of relaxor-based systems

Proof of concept on a (001) PMNPT single crystal

Exploit the flat energy landscape of relaxor-based systems

Network for classification of MNIST hand-written digit images

Relaxors are good for

1-various and unexplored applications
Relaxors are good for

Conclusion

- 1- various and unexplored applications
- 2- new physics or exploring other fields

Prosandeev et al., PRL126, 027602 (2021)

Relaxors are good for

Conclusion

- 1- various and unexplored applications
- 2- new physics or exploring other fields

Prosandeev et al., PRL126, 027602 (2021)

