CALORIC MATERIALS FOR COOLING AND HEATING

Emmanuel Defay

Fonds National de la Recherche Luxembourg

HOW MUCH ENERGY DOES COOLING STAND FOR ?

http://needtoknow.nas.edu/energy/energy-use/home-work/ https://www.iea.org/reports/the-future-of-cooling

More than 50 % heating + cooling !

World consumption for cooling = 20 % of electricity in 2020 Can reach 50 % in 2050 Global warning does not help

Decrease greenhouse gases

Increase energy efficiency

- Less energy required for cooling and heating
- Heat pump programme in EU

CURRENT TECHNOLOGY

https://www.youtube.com/watch?v=-Wj_MO4BqtA

- By far the most used system
- Developed since 1850s
- Work either with substances dangerous for health or greenhouse gases

ALTERNATIVE TECHNOLOGIES

CALORIC MATERIALS

Example of elasto-caloric effect in a balloon

Cf Feynman's lecture on thermodynamics

- Mechanical stress infers molecules rearrangement => entropy change

- Thermodynamic effect => positive then negative temperature change

- A cycle is required to make a fridge

Courtesy X. Moya (Cambridge, UK)

CALORIC MATERIALS – FOUR POSSIBLE EFFECTS

- Magnetocaloric
- Elastocaloric
- Barocaloric

Electrocaloric

MAGNETIC COOLING PRINCIPLE.

OUTLINE

- The electrocaloric effect
- Free energy description
- Electrocaloric materials
- A key element multilayer capacitors
- Characterization
- Electrocaloric cooling systems

THE ELECTROCALORIC EFFECT

Ceramic Pb(Sc,Ta)O₃

UCIIST

THE ELECTROCALORIC EFFECT

• Free energy description of a ferroelectric material, close to ferro-para transition

$$G = G_0 + \frac{1}{2}\alpha(T - T_{\rm C})P^2 + \frac{1}{4}\beta P^4 - EP$$

Gibbs free energy GPolarisation PTemperature T α , β : parameters of G G at zero polarisation G_0 Electric field ETransition Temperature = T_C

Entropy S dG = -SdT - PdE

$$S = -\left(\frac{dG}{dT}\right)_{P} = -\frac{1}{2}\alpha P^{2} \qquad \qquad = > \qquad \Delta S = -\frac{1}{2}\alpha \left(P_{\max}^{2} - P_{\min}^{2}\right)$$

Large variations of S need large α and large variations of P

$$G = G_0 + \frac{1}{2}\alpha(T - T_C)P^2 + \frac{1}{4}\beta P^4 - EP$$
$$\left(\frac{dG}{dP}\right)_T equilibrium = 0$$
$$\left(\frac{dG}{dP}\right)_T = \alpha(T - T_C)P + \beta P^3 - E = 0$$
$$\left(\frac{d^2G}{dP^2}\right)_T = \alpha(T - T_C) + 3\beta P^2 = \left(\frac{dE}{dP}\right)_T = \frac{1}{\varepsilon}$$

 ε – dielectric constant

If P is small
$$\varepsilon = \frac{1}{\alpha(T-T_c)}$$

1

For large ΔS , at similar ΔP^2 , we need large α , meaning small ε

1

ADIABATIC VARIATION OF TEMPERATURE

• Adiabatic conditions => $\Delta S_{total} = \Delta S_{lattice} + \Delta S_{dipoles} = 0$

$$T\Delta S_{lattice} = \rho C_p \Delta T$$
$$\Delta S_{dipoles} = -\frac{1}{2} \alpha \left(P_{\max}^2 - P_{\min}^2 \right)$$
$$\Delta T = \frac{T}{2\rho C_p} \alpha \left(P_{\max}^2 - P_{\min}^2 \right)$$

- ρ density
- C_p heat capacity

Large variations of T need large α and large variations of P

• Large variations of S (and T) need large variations of P

Interesting case – voltage induced phase transition in PST ceramics

Interesting case – field induced phase transition in PST ceramics

$$\Delta T = \frac{T}{2\rho C_p} \alpha \left(P_{\max}^2 - P_{\min}^2 \right)$$

Example on lead scandium tantalate (PST)

For large ΔS , we need large ΔP^2

and small *ε*

ANOTHER COMMENT FROM LANDAU

 $dU = TdS + EdP \longrightarrow G = U - TS - EP$ $dG = -SdT - PdE \longrightarrow \left(\frac{\partial P}{\partial T}\right)_{E} = \left(\frac{\partial S}{\partial E}\right)_{T}$ U: internal energy G: Gibbs energy

isothermal
$$\Delta S = \int_{E_{min}}^{E_{max}} \left(\frac{\partial P}{\partial T}\right)_{E} dE$$

adiabatic $\Delta T = -\frac{T}{c_{E}} \int_{E_{min}}^{E_{max}} \left(\frac{\partial P}{\partial T}\right)_{E} dE$

The variation of P with temperature is the engine of electrocalorics

ELECTROCALORIC MATERIALS

- Lead scandium tantalate **Barium titanate** Probably the best EC ceramic The lead free alternative • Pb Phase transition at room T° Phase transition at 120° C • Sc Ta 0 Ti ABO, ()Ba Lead zirconate Large <0 EC effect
 - Polyvinylidene Difluoride PVDF
 - Alternative to ceramics

LEAD SCANDIUM TANTALATE - PST

- Perovskite ABO3
- Ordered regular alternance of Sc and Ta on B-site
- When ordered => 1st order phase transition
- When disordered => ferroelectric relaxor

RESEARCH ARTICLE | JULY 09 2008 The role of B-site cation disorder in diffuse phase transition behavior of perovskite ferroelectrics N. Setter; L. E. Cross © Check for updates Journal of Applied Physics 51, 4356–4360 (1980) https://doi.org/10.1063/1.328296 CrossMark

Pb Sc Ta O

Export

LEAD SCANDIUM TANTALATE - PST

Calorimetry on PST bulk

- First order phase transition => latent heat at the transition
- Transition temperature depends on electric field (isofield DSC)

ARTICLE	
https://doi.org/10.1038/s41467-021-23354-y	OP

Giant electrocaloric materials energy efficiency in highly ordered lead scandium tantalate

Check for updates

Youri Nouchokgwe⊚ ^{12⊠}, Pierre Lheritier¹, Chang-Hyo Hong³, Alvar Torelló⊚ ¹², Romain Faye¹, Wook Jo⊚ ³, Christian R. H. Bahl⊙ ⁴ & Emmanuel Defay © ¹²

LEAD SCANDIUM TANTALATE - PST Entropy change with temperature at constant field (isofield) Field off Entropy S Field on Cycle **Reversible** phase transition Phase transition – larger cycle, more cooling power Temperature *T*

LEAD ZIRCONATE PZO

Perovskite ABO3 •

Positive and negative EC effects 20 K apart !

Origin of large negative electrocaloric effect in antiferroelectric PbZrO₃

Pablo Vales-Castro ^{1,*} Romain Faye,² Miquel Vellvehi ^{0,3} Youri Nouchokgwe,^{2,4} Xavier Perpiña ^{0,3} J. M. Caicedo,¹ Xavier Jordà,³ Krystian Roleder,⁵ Dariusz Kajewski,⁵ Amador Perez-Tomas,¹ Emmanuel Defay⁰,² and Gustau Catalan^{1,6,†} ¹Catalan Institute of Nanoscience and Nanotechnology (ICN2). Campus Universitat Autonoma de Barcelona. Bellaterra 08193. Spain

LEAD ZIRCONATE PZO

Transition driven by EC field

Differential Scanning Calorimetry

Electric field always brings to ferro ! antiferro to ferro => negative EC effect Para to ferro => positive EC effect

Phase transition is key

Pablo Vales et al., PRB 2020

BARIUM TITANATE

Recent work on multilayers made of BaTiO3

1.3

1.2

1.1

1.0 0.9 0.8

0.7

0.6

0.5

100

 $\Delta T_{EC} | (K)$

160

170 kV cm⁻¹

120

(b)

- ΔT max = 1.25 K @ 35 ° C
- Two phase transitions

J. Phys. Energy 5 (2023) 024017

https://doi.org/10.1088/2515-7655/acc972

Journal of Physics: Energy

PAPER

@ 35 °C

200

250

150

Electric field (kV cm⁻¹)

Electrocaloric effect in \mbox{BaTiO}_3 multilayer capacitors with first-order phase transitions

Junning Li¹, Alvar Torello¹, Youri Nouchokgwe¹, Torsten Granzow¹¹, Veronika Kovacova¹, Sakyo Hirose² and Emmanuel Defay^{1,*}

2.5

2.0

(¥) 1.5 |⊽⊥^{CO} 1.0

0.5

0.0

0

(a)

40

80

T(°C)

Science

AAAS

• Electric field_{max}=3MV/cn

Large Electrocaloric Effect in Ferroelectric Polymers Near Room Temperature Bret Neese, *et al. Science* **321**, 821 (2008); DOI: 10.1126/science.1159655

Electrocalorics comparison

Material		PZT 95/5	P(VDF-TrFE)
Reference		Mischenko, Science 2006	Neese et al., Science, 2008
$ \Delta S_{\rm m} $	[J K ⁻¹ kg ⁻¹]	8	65
$ \Delta S_{\rm v} $	[kJ K ⁻¹ m ⁻³]	62	97
$ \Delta T $	[K]	12	12
$ \Delta E $	[kV cm ⁻¹]	480	3000
$\varepsilon/\varepsilon_0 \max$	[-]	750	70
T _C	[°C]	222	80

10 x more entropy change in polymers for the same mass

Giant Electrocaloric Effect in Thin-Film PbZr0.95Ti 0.05O3 A. S. Mischenko, *et al. Science* **311**, 1270 (2006); DOI: 10.1126/science.1123811

Large Electrocaloric Effect in Ferroelectric Polymers Near Room Temperature Bret Neese, *et al. Science* **321**, 821 (2008); DOI: 10.1126/science.1159655

Layers of Inner Electrode

Best samples for electrocaloric prototypes

MLC BEHAVIOUR COMPARED TO BULK

- Much larger field applied in MLC
- Much larger active temperature range in MLC
- Similar heat generated

Youri Nouchokgwe@ ^{12⊠}, Pierre Lheritier¹, Chang-Hyo Hong³, Alvar Torelló@ ¹², Romain Faye¹, Wook Jo@ ³, Christian R. H. Bahl@ ⁴ & Emmanuel Defay@ ^{1⊠} Youri Nouchokgwe^{a,b,*}, Pierre Lheritier^a, Tomoyasu Usui^c, Alvar Torello^{a,b}, Asmaa El Moul^a, Veronika Kovacova^a, Torsten Granzow^a, Sakyo Hirose^c, Emmanuel Defay^{a,*}

Scripta Materialia 219 (2022) 114873

ROLE OF PHASE TRANSITIONS ON EC EFFECT

Example on PST multilayer capacitors (MLCs)

• Two regimes in $\Delta T = f(electric field)$ at constant temperature

Article Large electrocaloric effects in oxide multilayer capacitors over a wide temperature range

https://doi.org/10.1038/s41586-019-1634-0
Received: 27 September 2018
B. Nair¹, T. Usui², S. Crossley¹, S. Kurdi¹, G. G. Guzmán-Verri^{13,4}, X. Moya^{1*}, S. Hirose^{2*} & N. D. Mathur^{1*}

MLC PST ΔT max = 5.5 K

ELECTROCALORIC CHARACTERIZATION

Direct method (IR imaging)

Direct method (IR imaging)

Bog 2 Cursor 2 PST MLC (emissivity = 1) Entire sample area 2.50 2.25 2.00 2.0 1.75 (K) 1²⁷Ec| (K) EC T window 1.50 $T_s = 30^{\circ}C$ E = 15.8 V µm⁻¹ 1.25 Field on Field on 1.00 1.0 Field off Field off 0.75 0.50 20 60 10 30 40 50 0 100 200 300 400 500 600 700 T(°C) V(V)

 $\Delta T_{EC} = 2.2 \text{ K}$ from 25 to 50 °C at 600 V

Other means

- Thermocouple directly on devices (big samples)

 $|\Delta T_{EC}|$ (K)

- DSC (big samples)
- Indirect methods, from Maxwell (ergodic materials, thin films)

Cooling Systems

What do we need to build a cooler?

1) Cooling mechanism

2 Hot side

- Vapour compression / expansion
- Electrocaloric Effect

To release the heat generated by the active material to the surroundings.

The active material is cooled down and absorbs heat from a cooling load.

THE SLAPPING MACHINE

ARTICLE

DOI: 10.1038/s41467-018-04027-9 OPEN

Enhanced electrocaloric efficiency via energy recovery

E. Defay () ^{1,2,3,4}, R. Faye¹, G. Despesse () ², H. Strozyk¹, D. Sette¹, S. Crossley () ^{3,5}, X. Moya () ³ & N.D. Mathur () ³

PROTOTYPE VIDEO

The slapping machine

nature

DOI: 10.1038/s41467-018-04027-9

OPEN

Enhanced electrocaloric efficiency via energy recovery

E. Defay () ^{1,2,3,4}, R. Faye¹, G. Despesse () ², H. Strozyk¹, D. Sette¹, S. Crossley () ^{3,5}, X. Moya () ³ & N.D. Mathur 10 3

Cascading principle – "pass-the-parcel"

Based on PVDF Maximum ΔT device = 9 K

A cascade electrocaloric cooling device for large temperature lift

Yuan Meng', Ziyang Zhang $^{\odot}$ ', Hanxiang Wu', Ruiyi Wu², Jianghan Wu', Haolun Wang' and Qibing Pei $^{\odot}$

ARTICLES ://dol.org/10.1038/s41560-020-00715-3

A cascade electrocaloric cooling device for large temperature lift

Yuan Meng¹, Ziyang Zhang¹, Hanxiang Wu¹, Ruiyi Wu², Jianghan Wu¹, Haolun Wang¹ and Qibing Pei¹,³

Electrocaloric Cooling

Fluid-based regenerators

ELECTROCALORIC REGENERATOR – MODELLING

2D representation

- Coupling Heat transfer + Fluid dynamics modules
- Adiabatic conditions in the exterior walls $\left(\frac{dq_{\vec{n}}}{dt}=0\right)$
- No Slip boundary in the fluid wall $(u_{\vec{n}} = 0)$.
- Average Temperature of Platinum Circle

LUXEMBOURG INSTITUTE OF SCIENCE AND TECHNOLOGY

ELECTROCALORIC REGENERATOR – MODELLING

Model configurations

ELECTROCALORIC REGENERATOR – FABRICATION

Self standing Parallel-Plate

- 128 0.5 mm thick PST MLCs (16 col x 8 row)
- Double-sided tape spacers
- Silver paste electrodes

Shrinking Polymer tube to seal structure

Gluing Polymer tube ends to fluid tubing

Convenient solution

- 1. Negligible thermal mass
- 2. Minimum dead volume
- 3. Low cost, flexible structure

ELECTROCALORIC REGENERATOR – RESULTS

Giant temperature span in electrocaloric regenerator

A. Torelló, P. Lheritier, T. Usui, Y. Nouchokgwe, M. Gérard, O. Bouton, S. Hirose and E. Defay

Science **370** (6512), 125-129. DOI: 10.1126/science.abb8045

ELECTROCALORIC REGENERATOR – COOLING POWER

Coiled wire to act as a heat source in a 32 1 mm thick PST-MLC regenerator

Science

Giant temperature span in electrocaloric regenerator

A. Torelló, P. Lheritier, T. Usui, Y. Nouchokgwe, M. Gérard, O. Bouton, S. Hirose and E. Defay

Science **370** (6512), 125-129. DOI: 10.1126/science.abb8045

FUTURE PREDICTIONS

*Z. Ahčin, ..., J. Tusek, Joule 6, 2338-2357 (2022).

PYROELECTRIC HARVESTING

How good are Pb(Sc,Ta)O₃ multilayers at converting heat into electricity?

Good electrocaloric materials must be good pyroelectrics

Pyroelectric coefficient

$$\Delta T_{EC} = -\frac{T}{c_E} \int_{E_{min}}^{E_{max}} \left(\frac{\partial D}{\partial T}\right)_E dE$$

Can we harvest energy in the Joule range?

Scaling it up with macroscopic heat harvesting prototypes

THE PRINCIPLE OF PYRO ENERGY HARVESTING IN CYCLES

- 1. charge a capacitance C at temp T₁
- 2. disconnect the capacitance
 - => charge remains the same
- 3. heat it up to T₂
- 4. discharge the capacitance at T₂ (harvest)
- 5. cool it down to T₁
- 6. charge it again in order to cycle

Need for large variation of capacitance Need for very low leakage

PYROELECTRIC ENERGY HARVESTING IN CHARGE AND VOLTAGE

Temperature oscillations with time

Olsen cycle
AB: isothermal charge
BC: isofield heating
CD : isothermal discharge
DA: isofield cooling

BUILDING A PYROELECTRIC HARVESTER

EXPERIMENTAL SET-UP FOR ENERGY HARVESTING

28 1 mm-thick multilayers Parallel plate matrix: 7 col x 4 rows

One multilayer = 0.3 grams of active material

OUR BEST RESULT

Article

Large harvested energy with non-linear pyroelectric modules **nature**

https://doi.org/10.1038/s41586-022-05069-2 Received: 12 October 2021

Pierre Lheritier¹⁴, Alvar Torelló¹²⁴, Tomoyasu Usui³, Youri Nouchokgwe¹², Ashwath Aravindhan¹², Junning Li¹, Uros Prah¹, Veronika Kovacova¹, Olivier Bouton¹, Sakyo Hirose³ & Emmanuel Defay¹

11.2 J with 41.2 g of active material

Harvesting Joules with grams

Accepted: 4 July 2022

Energy efficiency

 η_r = efficiency with respect to Carnot

 $\eta = 1.43\%$ (solar panels ~20%)

WHAT CAN WE DO WITH IT ?

Some ideas under investigations

- Autonomous sensors with heat energy harvester (already in the previous study)
- Energy harvesting for large facilities (steel factories)
- Energy harvesting in space (CubeSat project)
- Solar panels

Main challenges

- Materials without lead and with phase transition
- Large heat exchange (water, designs)

CONCLUSION

- Large electrocaloric effect => large variation of polarisation and low ε
- Best electrocaloric materials => PST and PVDF
- Field-induced phase transition induces large EC effect
- Multilayer capacitors => excellent structure for prototypes (good material and large field)
- Best prototype : PST MLCs and fluid. ΔT = 13 K @ room T°
- PVDF and PST have a lot of potential. Alternative to PST required.
- Efficiency matters !
- The conjugated effect is also of interest pyroelectric energy harvesting

ACKNOWLEDGEMENTS

- Fonds National de La Recherche Luxembourg (FNR) CAMELHEAT, MASSENA
- Alvar Torello
- Youri Nouchokgwe
- Ashwath Aravindhan
- Uros Prah
- Junning Li
- Sakyo Hirose
- Tomoyasu Usui

- Veronika Kovacova
- FMT group

Pablo Vales Gustau Catalan

- Wook Jo
- Chang-Hyo Hong
- Neil Mathur
- Xavier Moya
- Bhasi Nair

