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Interfaces of quantum materials:
A laboratory for many-body physics in and out of equilibrium
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Why quantum geometry?
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Controlling dynamics of charges orbitals and 
spins through purely quantum effects (no 
Lorentz force).

Engineering strong electromagnetic responses 
originating from low-energy physics, THz 
electrodynamics.

Large non-linear responses.



Lecture plan
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1) Adiabatic approximation in quantum mechanics.
2) Geometric phase, Berry connection and Berry curvature
3) Example 1: spin ½ in a rotating magnetic field.
4) Anomalous transport.
5) Berry curvature of a two-level system.
6) Example 2: Berry curvature of a Rashba two-dimensional 

electron system.
7) Example 3: Berry curvature of a trigonal Rashba two-

dimensional electron system.
8) Application: quantum geometry at oxide interfaces.

Lecture notes available at caviglia.unige.ch/teaching



Learning objectives
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1) Discuss geometric properties of wavefunctions.
2) Compute geometric quantities of model two-level 

systems.
3) Identify condensed matter systems with quantum 

geometric properties.
4) Apply these ideas to your research?

Lecture notes available at caviglia.unige.ch/teaching



Learning objectives
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1) Discuss geometric properties of wavefunctions.
2) Compute geometric quantities of model two-level 

systems.
3) Identify condensed matter systems with quantum 

geometric properties.
4) Apply these ideas to your research?

Lecture notes available at caviglia.unige.ch/teaching



Adiabatic approximation
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Time-dependent Schrödinger equation



Adiabatic approximation

8

Time-dependent Schrödinger equation

Ansatz



Adiabatic approximation
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Time-dependent Schrödinger equation

Ansatz

Instantaneous Schrödinger-like eq



Adiabatic approximation
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Time-dependent Schrödinger equation

Ansatz

Instantaneous Schrödinger-like eq

Approx solutions neglecting
transitions, during the evolution
the system remains in its
instantaneous eigenstates

Valid for Text>>Tint



Adiabatic approximation
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Dynamical phase

Geometric phase or
Berry phase

Why geometric?



Geometric phase
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k is a vector field containing a set of
parameters describing the Hamiltonian 



Geometric phase
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k is a vector field containing a set of
parameters describing the Hamiltonian 

Path in the configuration space



Geometric phase
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k is a vector field containing a set of
parameters describing the Hamiltonian 

Path in the configuration space



Geometric phase
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k is a vector field containing a set of
parameters describing the Hamiltonian 

Path in the configuration space

Geometric phase acquired
along the path



Geometric phase
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The geometric phase can be calculated
as a purely geometric quantity



Geometric phase
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The geometric phase can be calculated
as a purely geometric quantity

Berry connection



Geometric phase
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Berry connection

In 3D configuration space
we can use Stoke’s theorem

Berry curvature



Geometric phase
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𝑘𝑥

𝑘𝑦

𝑘𝑧



Geometric phase
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𝑘𝑥

𝑘𝑦

𝑘𝑧

𝐶



Geometric phase
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𝑘𝑥

𝑘𝑦

𝑘𝑧

𝐶

𝛾𝑛 = න
𝐶

𝑨𝑛 𝒌 ⋅ 𝑑𝒌

𝑨𝑛 𝒌 = 𝑖 𝑢𝑛(𝒌) 𝛻𝒌 𝑢𝑛(𝒌)

Berry 
Connection



Geometric phase
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𝛾𝑛 = න
𝐶

𝑨𝑛 𝒌 ⋅ 𝑑𝒌

𝑨𝑛 𝒌 = 𝑖 𝑢𝑛(𝒌) 𝛻𝒌 𝑢𝑛(𝒌)

Berry 
Connection

𝑘𝑥

𝑘𝑦

𝑘𝑧

𝛾𝑛 =඾
Ω

𝑩𝑛 𝒌 ⋅ 𝑑𝛀

𝑩𝑛(𝒌) = 𝛻𝐤 × 𝑨𝑛(𝒌)

Berry Curvature

𝑩𝑛

𝐶



Example 1. Spin in a rotating B field
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Spin ½ immersed in a homogeneous
magnetic field rotating on a
two-dimensional plane



Example 1. Spin in a rotating B field
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Spin ½ immersed in a homogeneous
magnetic field rotating on a
two-dimensional plane

Geometric phase



Example 1. Spin in a rotating B field
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Spin ½ immersed in a homogeneous
magnetic field rotating on a
two-dimensional plane

Eigenvalues



Example 1. Spin in a rotating B field
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Eigenvalues

Eigenvectors

Spin ½ immersed in a homogeneous
magnetic field rotating on a
two-dimensional plane



Example 1. Spin in a rotating B field
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Gradient operator in
configuration space
in spherical coordinates

Spin ½ immersed in a homogeneous
magnetic field rotating on a
two-dimensional plane



Example 1. Spin in a rotating B field
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Spin ½ immersed in a homogeneous
magnetic field rotating on a
two-dimensional plane

Geometric phase, expectation
value of the gradient



Example 1. Spin in a rotating B field
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Spin ½ immersed in a homogeneous
magnetic field rotating on a
two-dimensional plane

Geometric phase acquired after
a full rotation



Example 1. Spin in a rotating B field
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Spin ½ immersed in a homogeneous
magnetic field rotating on a
two-dimensional plane

Geometric phase acquired after
a full rotation



Anomalous transport
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Geometric riformulation of QM
J. Anandan and Y. Aharonov
Geometry of quantum evolution
Phys. Rev. Lett. 65, 1697 (1990)

Quantum Geometric Tensor (QGT)

Re (QGT) : geodesic distance on the
Bloch’s sphere that is endowed with a
Fubini–Study metric

Im (QGT): Berry curvature, associated
with geometric phase of the wavefunction



Anomalous transport
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Gradient needs to be redefined

Position operators



Anomalous transport
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Position operators

Static homogeneous electric field

Gradient needs to be redefined



Anomalous transport
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Static homogeneous electric field

Anomalous velocity

In the absence of Berry curvature
we do not expect any dynamics

The z-component of the curl of A



Anomalous transport
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Static homogeneous electric field

Anomalous conductance

Anomalous conductance in a
Fermi liquid

Anomalous conductance in a
Chern insulator



Geometric phase
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𝛾𝑛 = න
𝐶

𝑨𝑛 𝒌 ⋅ 𝑑𝒌

𝑨𝑛 𝒌 = 𝑖 𝑢𝑛(𝒌) 𝛻𝒌 𝑢𝑛(𝒌)

Berry 
Connection

𝑘𝑥

𝑘𝑦

𝑘𝑧

𝛾𝑛 =඾
Ω

𝑩𝑛 𝒌 ⋅ 𝑑𝛀

𝑩𝑛(𝒌) = 𝛻𝐤 × 𝑨𝑛(𝒌)

Berry Curvature

𝑩𝑛

𝐶



Anomalous velocity and Berry phase
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𝛾𝑛 = න
𝐶

𝑨𝑛 𝒌 ⋅ 𝑑𝒌

𝑨𝑛 𝒌 = 𝑖 𝑢𝑛(𝒌) 𝛻𝒌 𝑢𝑛(𝒌)

Berry 
Connection

𝑘𝑥

𝑘𝑦

𝑘𝑧

𝛾𝑛 =඾
Ω

𝑩𝑛 𝒌 ⋅ 𝑑𝛀

𝑩𝑛(𝒌) = 𝛻𝐤 × 𝑨𝑛(𝒌)

Berry Curvature

𝑩𝑛

𝐶

𝒗𝑛 𝒌 =
1

ℏ
𝛻𝒌𝜖𝑛 𝒌 −

𝑒

ℏ
𝑬 × 𝑩𝑛 𝒌



Anomalous velocity and Berry phase
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𝛾𝑛 = න
𝐶

𝑨𝑛 𝒌 ⋅ 𝑑𝒌

𝑨𝑛 𝒌 = 𝑖 𝑢𝑛(𝒌) 𝛻𝒌 𝑢𝑛(𝒌)

Berry 
Connection

𝑘𝑥

𝑘𝑦

𝑘𝑧

𝛾𝑛 =඾
Ω

𝑩𝑛 𝒌 ⋅ 𝑑𝛀

𝑩𝑛(𝒌) = 𝛻𝐤 × 𝑨𝑛(𝒌)

Berry Curvature

𝑩𝑛

𝐶

Effective Vector Potential Effective Magnetic Field

𝒗𝑛 𝒌 =
1

ℏ
𝛻𝒌𝜖𝑛 𝒌 −

𝑒

ℏ
𝑬 × 𝑩𝑛 𝒌

Karplus, Luttinger Phys. Rev. 95, 1154 (1954)
Berry Proc. R. Soc. London A 392, 45 (1984)
Chang, Niu PRL 75, 1348 (1995)



Learning objectives
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1) Discuss geometric properties of wavefunctions.
2) Compute geometric quantities of model two-

level systems.
3) Identify condensed matter systems with quantum 

geometric properties.
4) Apply these ideas to your research?

Lecture notes available at caviglia.unige.ch/teaching



Berry curvature of a two-level system
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Hamiltonian of a two-level system

ℋ 𝐤 = 𝑣𝐹 𝜎𝑥𝑘𝑥 + 𝜎𝑦𝑘𝑦 +𝑚𝜎𝑧

ℋ 𝐤 = 𝑣𝐹
𝑥𝜎𝑥𝑘𝑥 + 𝑣𝐹

𝑦
𝜎𝑦𝑘𝑦 + 𝑣𝐹

𝑧𝜎𝑧𝑘𝑧

gapped graphene

Weyl semimetal

Relevant for systems such as



Berry curvature of a two-level system

41

Hamiltonian of a two-level system

We want to compute BC

Eigenvectors and eigenvalues



Berry curvature of a two-level system
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Hamiltonian of a two-level system

We want to compute BC

Gradient



Berry curvature of a two-level system
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Hamiltonian of a two-level system

We want to compute BC

Gradient



Berry curvature of a two-level system
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Hamiltonian of a two-level system

We want to compute BC

Expectation of gradient



Berry curvature of a two-level system
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Hamiltonian of a two-level system

We want to compute BC

Berry connection



Berry curvature of a two-level system
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Hamiltonian of a two-level system

Berry curvature in two-dimensions

Berry curvature of a two-level system



Example 2. BC of a Rashba 2DEG
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Hamiltonian of a Rashba 2DEG



Example 2. BC of a Rashba 2DEG

48

Hamiltonian of a Rashba 2DEG

In-plane crystal momentum

We want to find its spin texture



Example 2. BC of a Rashba 2DEG
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Hamiltonian of a Rashba 2DEG

We want to find its spin texture

Matrix form

In-plane crystal momentum



Example 2. BC of a Rashba 2DEG
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Hamiltonian of a Rashba 2DEG

Eigenvalues

Eigenvectors



Example 2. BC of a Rashba 2DEG
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Hamiltonian of a Rashba 2DEG

Eigenvalues

Eigenvectors



Example 2. BC of a Rashba 2DEG
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Spin splitting of the Fermi 
surface



Example 2. BC of a Rashba 2DEG
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Spin splitting of the Fermi 
surface

Spin-momentum locking



Example 2. BC of a Rashba 2DEG
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Spin splitting of the Fermi 
surface

Spin-momentum locking



Example 3. BC of a trigonal Rashba 2DEG
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Example 3. BC of a trigonal Rashba 2DEG
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Example 3. BC of a trigonal Rashba 2DEG
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Example 3. BC of a trigonal Rashba 2DEG
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ത1ത12
k

k ത110
-Ω*k

+Ω*k

εF

𝑒2

ℏ
∫

𝑑2𝑘

(2𝜋)2
𝑩 𝐤 𝑓𝐤

0 = 0



Learning objectives
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1) Discuss geometric properties of wavefunctions.
2) Compute geometric quantities of model two-level 

systems.
3) Identify condensed matter systems with 

quantum geometric properties.
4) Apply these ideas to your research?

Lecture notes available at caviglia.unige.ch/teaching



Sources of Berry curvature
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1) Zero for real wavefunctions



Sources of Berry curvature
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1) Zero for real wavefunctions

2) Zero for planar spin textures

𝑩𝒛
± 𝒌 = ±෡𝒅 ∙ (𝝏𝒌𝒙

෡𝒅 × 𝝏𝒌𝒚
෡𝒅)/𝟐



Sources of Berry curvature
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1) Zero for real wavefunctions

2) Zero for planar spin textures

3) Large near avoided band crossings

Band anticrossings

𝑩𝑧 𝒌 = [ 𝜓𝑚|𝛻𝜓𝑛 × 𝛻𝜓𝑛|𝜓𝑚 ]𝑧

=
[ 𝜓𝑚|𝛻𝐻|𝜓𝑛 × 𝜓𝑛|𝛻𝐻|𝜓𝑚 ]𝑧

(𝜖𝑚 − 𝜖𝑛)
2

𝜓𝑚

𝜓𝑛

𝜖𝑛 − 𝜖𝑚

𝑩𝒛
± 𝒌 = ±෡𝒅 ∙ (𝝏𝒌𝒙

෡𝒅 × 𝝏𝒌𝒚
෡𝒅)/𝟐

Quantum superposition at finite 
crystal momentum



Conventional systems
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ℋ 𝐤 = 𝑣𝐹 𝜎𝑥𝑘𝑥 + 𝜎𝑦𝑘𝑦 +𝑚𝜎𝑧

𝜎 sublattice space

Gapped graphene

Weyl semimetals

ℋ 𝐤 = 𝑣𝐹
𝑥𝜎𝑥𝑘𝑥 + 𝑣𝐹

𝑦
𝜎𝑦𝑘𝑦 + 𝑣𝐹

𝑧𝜎𝑧𝑘𝑧

𝜎 spin space



Conventional systems
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ℋ 𝐤 = 𝑣𝐹 𝜎𝑥𝑘𝑥 + 𝜎𝑦𝑘𝑦 +𝑚𝜎𝑧

𝜎 sublattice space

Gapped graphene

Weyl semimetals

ℋ 𝐤 = 𝑣𝐹
𝑥𝜎𝑥𝑘𝑥 + 𝑣𝐹

𝑦
𝜎𝑦𝑘𝑦 + 𝑣𝐹

𝑧𝜎𝑧𝑘𝑧

𝜎 spin space

Quantum superposition at finite crystal momentum 
of a single quantum number



65

Can we design Berry curvature sources
from the quantum superpositions at finite crystal momentum of 

multiple quantum numbers?

Interplay of correlated and topological physics

Key questions



(111)LAO/STO: the first material system 
with coexisting sources of Berry curvature
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Probed by linear and nonlinear 
anomalous transport.

Spin
sources

Orbital
sources

Lesne et al. 
Nature Materials 22, 576  

(2023)



Exploring hexagonal symmetry
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O

Sr
Ti

[100]

[010]

[001]
[ത1ത12]

[ത110]
[111]



Trigonal warping and spin-orbit 
coupling
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k

ε

ത110
k

112

ത110k

k
1
1
2

εF



Out-of-plane spin texture
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Surface of (111)SrTiO3
He et al. Physical Review Letters 120, 
266802 (2018)



Out-of-plane spin texture
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Surface of (111)KTaO3
Bruno et al. Advanced Electronic Materials, 
1800860 (2019)



Spin sources of Berry curvature
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ത1ത12
k

k ത110
-Ω*k

+Ω*k

εF

𝑒2

ℏ
∫

𝑑2𝑘

(2𝜋)2
𝑩 𝐤 𝑓𝐤

0 = 0

No dipolar distribution



In-plane magnetic field
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ത110k
k
1
1
2

ത1ത12
k

k ത110

k

ε

ത110k

112

εF

Ω*k

0

𝑒2

ℏ
∫

𝑑2𝑘

(2𝜋)2
𝑩(𝐤)𝑓𝐤

0 ≠ 0



Anomalous planar Hall effect
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ത110k
k
1
1
2

ത1ത12
k

k ത110

k

ε

ത110k

112

εF

Ω*k

0



Spin sources of Berry curvature
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[ത 1
ത 12
]

[ത110] M

BI

Ω*k

0

Lesne et al. 
Nature Materials 22, 576  

(2023)



Spin sources of Berry curvature
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Ω*k

0

[ത 1
ത 12
]

[ത110] M

BI

[ത 1
ത 12
]

[ത110] M

B

I
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Can we design Berry curvature sources
from the quantum superpositions at finite crystal momentum of 

multiple quantum numbers?
Can we find transport effects active at B=0?

Key questions



Structural phase transitions in SrTiO3
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𝐷3𝑑𝒞3𝑣

110 K

𝒞2ℎ𝒞𝑠 𝒞𝑠

40 K

(Images courtesy A. Lau)

Polar
order

T

Δ trigonal crystal field Δm tetragonal distortion acting at gamma
αm tetragonal distortion acting at finite k

αOR interfacial 
breaking of inversion 
symmetry with polar 
axis



Orbital sources of Berry curvature
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t2g orbitals with mixing terms (neglecting spin-
orbit coupling)

Δ trigonal crystal field

T < 105 K
Δm and αm tetragonal distortion

T < 30 K
αOR interfacial breaking of inversion symmetry 

with polar axis

Mercaldo et al. npj Quantum Materials (2023) 
arXiv:2301.04548



Orbital sources of Berry curvature
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Hot spots Singular pinch points

Dipolar distributions: nonlinear transport 
responses



Orbital sources of Berry curvature
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Prediction:
BCD in the 10s nm range!



Non linear Hall effect at B=0
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Lesne et al. 
Nature Materials 22, 576  

(2023)

Edouard LesneUlderico Filippozzi



Dipole magnitude
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WTe2

Ma et al. Nature 565, 337 (2019)

Sodemann, I. & Fu, L.. Phys. Rev. Lett. 115, 

216806 (2015)

(111)LaAlO3/SrTiO3



Dipole magnitude

83(111)LaAlO3/SrTiO3

Lesne et al. 
Nature Materials 22, 576  

(2023)



Want to know more? Ruthenates
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Ru4+ [Kr] 4d4

Tetragonal crystal field splitting of t2g 
orbitals: δ.

Spin-orbit driven mixing with inherent 
quantum phase.

Weyl points acting as sources of 
emergent magnetic fields, anomalous 
Hall conductivity, and unconventional 
spin dynamics. 

Das et al., Phys. Rev. X 8, 011048 (2018)

Itoh et al., Nature Comm 7: 11788 
(2016) 



Want to know more? Iridates
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Spin-orbit driven 
mixing with inherent 
quantum phase.

P. Schütz et al. Physical Review Letters 119, 256404 (2017)



Collaborators and references
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Lesne et al. Nature Materials 22, 576  (2023)
Mercaldo et al. npj Quantum Materials (2023)
van Thiel et al. Physical Review Letters 127 12, 127202 (2021)
van Thiel et al. ACS Materials Letters 2 4, 389-394 (2020)
Physical Review Research 2 2, 023404 (2020)

Image:
Xavier Ravinet 
UNIGE
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87
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Ruthenates

88
Fang et al. Science 302, 92 (2003)



Anomalous Hall effect from Berry phase

89

Berry curvature becomes sizable at 
the anticrossing of spin-orbit split 

bands with a Zeeman term.

Sign changes well described by theory 
that includes Berry phase and impurity 

scattering

Onoda et al. PRL 97, 126602 (2006)



90

What is the electronic band topology of the 
3D Weyl system SrRuO3 in the two-

dimensional limit?



Model system calculations

91

How do the Weyl points evolve in the two-dimensional limit?

Effective Hamiltonian with spin-orbit 
coupling and next-nearest neighbours 

interorbital hopping

2 groups of 3 bands with different 
spin-orbital parity.

Within each sector, 2 topologically 
non-trivial bands with Chern numbers 

+2 and -2 and a single trivial band.
Avoided level crossing at finite k

Mario Cuoco (CNR Spin)

Physical Review Research 2, 023404 (2020)



Model system calculations

92

Berry curvature of the topologically non-trivial 
bands.

Sharp peaks with opposite sign located at the 
avoided level crossings.

Since the bands have non-trivial Chern number 
their contribution to the Berry curvature cannot 

vanish and is robust against variations in electron 
occupation.

The splitting and relative occupation of the two 
non-trivial bands determine a competition 

between positive and negative Berry curvature.

Physical Review Research 2, 023404 (2020)



RuO2/LaO interface

93Physical Review Letters (2021) arXiv:2107.03359

Thierry van Thiel



Charge reconstruction

94

??

Physical Review Letters 127, 127202 (2021)



Charge reconstruction

95



Magnetic reconstruction

96



Berry curvature reconstruction in 
bilayer SRO

97



98Physical Review Letters 127, 127202 (2021)



99Physical Review Letters 127, 127202 (2021)



100Physical Review Letters 127, 127202 (2021)
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