Scanning Probe Microscopies

K. Bouzehouane Unité Mixte de Physique, CNRS, Thales, Palaiseau, France

https://devicematerialscommunity.nature.com/users/47492-mario-lanza/posts/50158-scanning-probe-microscopy-for-advanced-nanoelectronics

1- Basics of Scanning Probe Microscopy

2- Advanced modes : Beyond topography

Scanning Resistance-AFM : Electrical properties

Piezoresponse-AFM : Ferroelectric properties

Scanning NV Magnetometry : Magnetic properties

Scanning Probe Microscopy

No more interaction with electromagnetic waves (light, electron...)

Interaction between a probe and the surface

How to obtain a nanometric resolution ?

Scanning Probe Microscopy How to obtain nanometric resolution ?

Positioning the probe with nm precision in the 3 dimensions
Piezo-electric materials

⇒ Probe-sample interaction limited in space

⇒ Tip geometry (fabrication technology)

⇒ Type of interactions (long or short range)

Piezoelectric material

Electric field ⇒ Elastic deformation of the cristal

 $V = 100V \Rightarrow \Delta L \sim 10 \text{ nm}$ $V = 1 \text{ mV} \Rightarrow \Delta L \sim 0.1 \text{ pm}$ $\Delta H \sim \Delta L * H/L \sim \Delta L*100 \text{ mm}/1 \text{ mm}$ $\Rightarrow \Delta H \sim \text{ pm to } \mu \text{m}$

Piezoelectric ceramics : nanometric motion

How to obtain nanometric resolution ? The piezo-scanner

- One position in space = 3 voltages (Vx, Vy, Vz)
- Surface in space = file of voltages (Vxi, Vyi, Vzi)
- Relation $\Delta L = f(V) \Rightarrow$ Topography (X, Y, Z)

How to obtain nanometric resolution ? The probe

Probe = micro-fabricated tip

Lateral resolution depends on the tip shape...

Tip radius ~ 2 to 100nm

General principle of SPM

At each point (X_i, Y_i) of the surface, Z_{piezo} has to be distorted of ΔZ to maintain the interaction constant

 \Rightarrow Cartography (X,Y, ΔZ (interaction = cst))

Scanning Tunneling Microscopy (STM)

« Interaction » tip-surface = Tunneling current I α e^- $^{\kappa d}$

 \Rightarrow Cartography (X,Y, Z ($I_{tunnel} = cst$))

Surface of Boron doped silicon

Bining & Rohrer (1981) Nobel Prize in physics 1986

- A Revolution but....
 - ⇒ Limited to conducting materials
 - \Rightarrow topo mixed with local DOS
 - ⇒ Ultra High Vacuum (surface pollution)

Atomic Force Microscopy : Forces

Interactions between the atoms of a probe and the atoms of the surface

How to measure those forces on the tip ?

How to measure the forces on the tip ? The Cantilever

Cantilever = bendable structure holding the tip ⇔ Spring with stiffness k

Silicon based micro-fabrication technologies

k ~ 0.01 to 100 N.m⁻¹ depending on geometry and materials

Tip-surface interaction transmitted to the cantilever

Tip on cantilever \Leftrightarrow tip attached to a spring Spring deformation α applied force (on the tip)

$$\mathbf{F} = -\mathbf{k} \cdot \mathbf{x}$$

- F : Tip-surface atomic force
- k : stiffness
- x : cantilever deformation

How to measure the cantilever deformation ?

VOLUME 56, NUMBER 9

PHYSICAL REVIEW LETTERS

3 MARCH 1986

Atomic Force Microscope

G. Binnig^(a) and C. F. Quate^(b) Edward L. Ginzton Laboratory, Stanford University, Stanford, California 94305

and

Ch. Gerber^(c)

IBM San Jose Research Laboratory, San Jose, California 95193 (Received 5 December 1985)

The scanning tunneling microscope is proposed as a method to measure forces as small as 10^{-18} N. As one application for this concept, we introduce a new type of microscope capable of investigating surfaces of insulators on an atomic scale. The atomic force microscope is a combination of the principles of the scanning tunneling microscope and the stylus profilometer. It incorporates a probe that does not damage the surface. Our preliminary results *in air* demonstrate a lateral resolution of 30 Å and a vertical resolution less than 1 Å.

How to measure the cantilever deformation ?

Measure of atomic interactions α a voltage

Geometrical amplification of the laser deviation ⇒ vertical resolution < 0.01 nm

How to measure the cantilever deformation ?

Focus the laser at the very end of the cantilever for better sensitivity

Geometrical amplification of the laser deviation ⇒ vertical resolution < 0.01 nm

Atomic Force Microscopy

Measure of **atomic interactions** = **voltage** from photodetectors

At each point (X_i, Y_i) of the surface, Z_{piezo} has to be distorted of ΔZ to maintain the laser deflection constant

⇒ Cartography (X,Y, Z (**deflection** = cst))

Atomic Force Microscope

Nanoscope II Digital Instruments (~1990)

Atomic Force Microscopy

http://www.dme-spm.com/remafm.html

From deflection voltage to actual force

Force curve: Deflection (V) \Leftrightarrow cantilever deformation (nm)

No XY scan & extension of the Zpiezo

Sensitivity ~ 33 nm/V

PURELY GEOMETRIC

From deflexion voltage to actual force

Hooke's law: cantilever deformation (nm) \Leftrightarrow Force (N)

F= - **k**.x

Believe manufacturers data sheets

17 µm

 $\pm 2 \mu m$

Tip Height

(thermal oscillation of the cantilever + model)

Or measure it

Spatial Resolution

Vertical resolution : ~ 10 pm

- Ability to measure the smallest cantilever deformation (laser intensity noise, photodiodes noise, thermal noise of cantilever)
- Positioning noise of piezo-ceramic Z....

Lateral resolution : $\sim 10 \text{ pm to } 10' \text{s nm}$

- Positioning noise of piezo-ceramic X/Y....
- Type of interaction (long or short range)
- Tip geometry

Finite tip radiusShort range interaction

- Infinitely sharp tip
- Long range interaction

- Infinitely sharp tip
- Short range interaction

Contact mode or "static mode"

Contact mode or "static mode"

Advantages

- □ High forces (~10⁻⁸ to 10⁻⁶ N): surface pollution is swept away
- ⇒ Work in ambient conditions, liquid...
- Images acquisition: "easy" and fast (~mn)
- Permanent contact : Compatible with measurement of some physical parameters (electrical current, thermal properties,
- 25 mechanical properties...)

Drawbacks

 High contact pressure (GPa):
sample deformation or destruction

High friction forces

- tip wearing and breaking: tip sharpness is limited and so is lateral resolution (~10nm)
- Sweeping effect : sweep off loosely bonded objects on surface

Dynamic mode

The cantilever is an harmonic oscillator which has a mechanical resonance

- the cantilever oscillation is modified by the forces acting on the tip
- ⇒ Oscillation parameter is used as the feedback signal : Frequency or Amplitude

Advantages :

⇒ lower forces

- At resonance, the harmonic oscillator is very sensitive to perturbations
- Frequency measurement or Lock-in amplifier : small signals
- No more friction forces

26

Oscillating cantilever : tip sample interaction fundamentals

Tip-sample interaction treated as a perturbation

 $m\ddot{z}$ + $\Gamma\dot{z}$ + kz = F(z) with $F(z) = F(z_o) + (z - z_o)\partial_z F$

→ Mere renormalization :

$$\omega_{\text{o,eff}} = \omega_{\text{o}} \left(1 - \frac{1}{2k} \partial_z F \right)$$

The resonance frequency is shifted

Oscillating cantilever : tip sample interaction fundamentals

If F(z) is attractive $\Rightarrow f_{res}$ is reduced If F(z) is repulsive $\Rightarrow f_{res}$ is increased

Oscillating cantilever : Forced oscillation

Forced oscillation (Lock-In amplifier) => Amplitude used as feedback signal

Attractive interaction ⇒ the amplitude decreases Repulsive interaction ⇒ the amplitude decreases

If the feedback loop detects a drop of the amplitude ⇒ Retract or extend the Zpiezo ? (is it a bump or a hole on the sample surface ?)

Oscillating cantilever : Forced oscillation

Amplitude used as feedback signal

- Amplitude setpoint < free amplitude (repulsive force)
- Increase tip-sample repulsive interaction ⇒ Decrease the amplitude setpoint

At each point (X_i, Y_i) of the surface, Z_{piezo} has to be distorted of ΔZ to maintain the amplitude constant

 \Rightarrow Cartography (X,Y, Z (**amplitude** = cst))

Advantages

- ❑ Lower forces (~10⁻⁹ 10⁻¹⁰ nN) : soft material preserved
- Images acquisition: easy
- ❑ No friction forces : sharper tips are preserved ⇒ better lateral resolution

Drawbacks

- □ Slower feedback than permanent contact: longer acquisition (steady state after $\tau = 2Q/\omega_0$)
- Adhesive surfaces catch tips: feedback instabilities
- No permanent contact with the surface (~ µsec)

Epitaxial Silicon

Contact mode

Tapping mode

Images distortion (artefacts) due to the tip

Images distortion (artefacts) due to the tip

Tip can be characterized by a tip radius and a cone angle

2nm < R < 50nm

 $2^{\circ} < \alpha < 35^{\circ}$

Artefacts : Tip radius
Artefacts : Tip radius

Artefacts : Tip radius

- Tip radius -

 $R_{object} \ll R_{tip} \Longrightarrow$ the object images the tip

Atefacts : Cone angle

Steep step => image of the tip angle Easy to detect : tip geometry is known

Atefacts : Think in 3D

OK

Artefact : Pyramidal shape of the tip

Example of artefacts

Damaged tip

Repetition of the same shape on the sample surface **Rotate the sample** no rotation of the shapes ⇒ the sample images the tip

⇒ change the tip

Example of artefacts

Damaged tip : double tip

0.75

0.50

0.25

μн

1465

00

Any doubt ? ⇒ Change the tip

AFM : Beyond topography

- Electrostatic properties (Electric Force Microscopy, Kelvin Probe Force Microscopy)
- Magnetic properties (Magnetic Force Microscopy)
- Conduction properties (Scanning Resistance AFM)
- Piezo/Ferroelectric properties (Piezoresponse Force Microscopy)
- Thermal properties (Thermal-SPM)
- Mechanical properties (Force Modulation, Quantitative Nanomechanical Microscopy...)
- Dielectric properties (Scanning Microwave Impedance Microscopy)
- Electrochemical properties
- **Optical properties : Resolution** $<< \lambda$ (IR spectroscopy, RAMAN, Photoluminescence...)
 - Absorption IR spectroscopy
 - Scanning Near Field Optical Microscopy
 - Tip Enhanced Optical Microscopy
- Quantum sensors (Scanning NV Microscopies)
- Atomic and molecular resolution
- Stretching molecules
- Lithography (mechanical, deposition, electrochemistry, electrically...)
- Video rate and beyond
- Life science
- Many more....

Advanced modes : Long range forces

Long range forces : Two pass modes or lift mode

First pass : tapping mode

- ⇒ Short range repulsive forces dominate
- \Rightarrow « atomic » topography is recorded

Second pass : Tip at constant height

- \Rightarrow Long range forces (VdW, B, E)
- ⇒ Constant height => VdW = Cte
- ⇒ Only **B**, **E** forces are imaged

Electric and Magnetic Force Microscopy

+++

• Conductive tip (Pt coating) ⇒ Electrostatic forces

Electric Force Microscopy (EFM) Kelvin Force Microscopy (KFM)

- Trapped charges
- Surface potentials
- Voltage drop in circuits

EFM of a failed device Devices along the region have voltages applied In the 3 pronged arrangement of the right. An extra line feature on the left indicates a saturated transistor

• Magnetic tip (Co coating) ⇒ Magnetic forces

Magnetic Force Microscopy (MFM)

 $1^{st}\mbox{ scan: morphology } 2^{nd}\mbox{ scan: MFM phase } Magnetic tape$

Advanced modes:

Scanning Resistance-AFM

Scanning Resistance-AFM

- Contact mode AFM with a conducting tip
- Voltage bias tip-sample ⇒ Measure of the current

⇒ Simultaneous mapping topography and local conductivity at nm-scale

 $La_{2/3}Ca_{1/3}MnO_3\,/\!/\,SrTiO_3(001)$

Current amplifiers for SR-AFM: need for speed

Resistance mapping: current measurement for each pixel
High bandwidth (>1 kHz)

512*512 pixels image @1ms/pixel ~ 5 min acquisition time for a single image

✓ AFM tip is small ⇒ nanoscale surface contact ⇒ low current
➢ High gain (linear amplifiers)

✓ Various samples or properties ⇒ Large current variations
➢ High dynamic (log amplifiers)

Scanning Resistance-AFM : Conducting probes

Fast wear out

Serial resistance (on gold) \sim 100 Ω

Pt coated tip

Polycristalline B-doped diamond coated tip

Also TiN, W, W₂C, Si/Pt, bulk Pt, ...

 \Rightarrow upper limit of the small conductive area size

⇒ Small insulating area may not be seen

SR-AFM probes: real life of a tip

Pt coated tip

After...

500nm

Another after...

"Patience and a willingness to sacrifice many AFM tips in the name of science are necessary" S. Fusil, ISOE2015

Conducting tip characterization : Force curves on a metallic layer

No XY scan - Extend Zpiezo Record simultaneously laser deflexion & current

Conducting tip characterization : Force and current

The force and the current: metallic Pt tip on Au film

Conducting tip characterization : Force and current

The force and the current: B-doped diamond tip on Au film

Good B-doped diamond tip on Au layer :

- \Rightarrow Force <1µN to achieve a stable electrical contact
- \Rightarrow Serial resistance below 10k Ω

Conducting tip characterization : Force curves

Used B-doped diamond tip on Au layer :

- \Rightarrow Force >10µN to reach lowest R
- ⇒ Unstable electrical contact
- \Rightarrow Serial resistance > 100k Ω

Resistance mapping: gold film

B-doped diamond tip on Au layer

Larger scan on the same area: Need to dig \sim nm (adsorbates)

to reach gold!!

Significant force is usually needed to achieve good electrical contact in ambient atmosphere

- Make force curves on reference sample (Au layer) to check your tip before AND after your measurements
- Check I(V) on your sample :
 - Have different type of conductive coatings (sometime Schottky,)
 - Try positive and negative voltages (sometime Schottky,)
- Check the topography after conduction imaging at larger scale & lower force (electrochemistry, tip digging...)
- If during experiments suddenly you don't understand what's going on

 \Rightarrow Change the tip

 \Rightarrow then think...

Examples of applications of SR-AFM for oxides

Material studies : Thin films characterization

A multiferroïc oxide (Ferroelectric & Antiferromagnetic) : BiFeO₃

⇒ Conductive parasitic phase prevents macroscopic measurement of ferroelectric properties

Material studies : Thin films characterization

A multiferroïc oxide (Ferroelectric & Antiferromagnetic) : BiFeO₃

70 nm BiFeO₃ on Nb-doped SrTiO₃

t BFO (nm)

6,0

⇒ Conductive parasitic phase prevents macroscopic measurement of ferroelectric properties

⇒ Optimized BFO ultrathin films are homogeneous and show tunneling conduction

Material studies : Tunnel barrier of NiFe₂O₄

NiFe₂O₄ : Ferrimagnetic insulator (Tc \sim 850K) Ultra thin films of NFO grown by sputtering

⇒ Optimization of NFO growth without complex micro-fabrication of tunnel junction

Metal–Insulator transition in oxides : SR-AFM at low T

Direct Mapping of Phase Separation across the Metal-Insulator transition

Material studies : Interfaces in oxides

A high-mobility electron gas at the LaAlO₃/SrTiO₃ heterointerface

Opened questions :

- Are the carriers really confined or is it bulk STO properties (oxygen vacancies) ?

- If confined, what is the thickness of the electronic gas ?

Interfaces in oxides : Cross section SR-AFM

Advanced modes :

Piezoresponse Force Microscopy

Ferroelectric materials

- \checkmark In ferroelectrics, spontaneous electric polarization switchable by an electric field
- ✓ Ferroelectrics are always piezoelectric

Piezoresponse - AFM : Ferroelectric is piezoelectric

Contact mode AFM with a conducting tip

Electric field ⇒ elastic deformation

Static deformation ~ 10-100 pm
Piezoresponse - AFM

P_{DOWN} domains: in phase with AC voltage P_{UP} domains : 180° out of phase with AC voltage

Piezoresponse Force I	Microscopya
	iple
Vertical Piezoresponse	
Vert. Oscill. Phase Lag	
Copyright 🐵 NT-MDT, 2009	www.ntmdt.com

Piezoresponse - AFM

- Simultaneous imaging of the topography and ferroelectric domains
- $|V_{DC}| > |V_{coercives}|$: Write artificial domains

Cycle of local piezoresponse : Stop scan + (V_{AC} + sweep V_{DC})

78

Piezoresponse - AFM : Imaging example

BiFeO₃ / La_{0.7}Sr_{0.3}MnO₃ // SrTiO₃

Piezoresponse – AFM : Switching spectroscopy

Hysteretic piezoresponse cycle : $V = V_{DC} + V_{AC} \cos(\omega t)$

80

PFM : AC excitation, but which frequency?

PFM : AC excitation, but which frequency?

PFM : AC excitation, question of noise...

PFM : AC excitation, question of noise...

⇒ Phase contrast is reduced below 180°

Main source of « noise » at excitation frequency : Attractive force between capacitor plates (cantilever/sample)

⇒ Vertical cantilever oscillation

- For PFM (Out-of-Plane) prefer stiff cantilever (~ 40N/m)
- Use excitation frequency far from cantilever resonance

Piezoresponse – AFM : Noise

- It also **REALLY** depends on your AFM
- Optimize with a reference sample ⇒ Phase contrast ~ 180°

PFM Phase

Piezoresponse – AFM : Resolution

In-plane component of the polarization

Lateral or "in plane" PFM

If the cantilever torsion stiffness is too high, tip will « slide » on the surface

⇒ Reduced signal

Lateral or "in plane" PFM

Component of the polarisation vector perpendicular to cantilever axis

- ⇒ Rotation of the sample
- ⇒ Full determination of in-plane polarisation vector
- ⇒ « Vertical » PFM : Out of plane component of the polarisation

Vectorial PFM

BiFeO₃

Polarization along <111> directions

3 types of DWs

Vectorial PFM

BiFeO₃ / SrRuO₃ // DyScO₃ (001)

⇒ full picture of domains and domain walls

P4

In-plane writing

Tip "Trailing Field" ⇒ In-plane polarization variant can be selected/written

In plane phase

⇒ Domains with various polarization orientations can be created
⇒ Various domains walls can be created

PFM imaging through a top electrode

Local piezoresponse

topography

OP phase

PFM imaging through a top electrode

Local piezoresponse

Switching dynamics

Piezoresponse – AFM

Vectorial PFM ⇒ All polarization variant can be determined

Tip DC bias ⇒ Out-of-plane polarization variant can be selected/written ⇒ In-plane polarization variant can be selected/written

All polarization configurations can be determined and potentially written

30 Gbit/cm²

Paruch, APL 79, 530 (2001).

BFO 60x60 μm PFM phase images

DW conduction in... BiFeO₃

Creation of peculiar charged domain walls (« head to head » or « tail to tail »)

Charged DW are highly conductive

Ferroelectric tunnel junctions ?

Ferroelectric as a tunnel barrier

POLAR SWITCH L. Esaki, R. B. Laibowitz and P. J. Stiles

Non volatile memory Esaki *et al.*, IBM Discl. Bull. **13**, 2161 (1971)

Ferroelectric as tunnel barriers : BaTiO₃

 $BaTiO_3$ (1-4 nm)

Electrode ($La_{2/3}Sr_{1/3}MnO_3$)

Question 1 : Are the ultra thin films of BTO still ferroelectric ?

Piezoresponse force microscopy

✓The written domains are reversible and stable for at least 72 hours

Strained $BaTiO_3$ is ferroelectric down to 1 nm

Ferroelectric as tunnel barriers : $BaTiO_3$

Question 2 : Are the ultra thin films of BTO good tunneling barriers ?

Scanning Resistance - AFM

Tunnel transport throught BaTiO₃ barriers

102

Ferroelectric as tunnel barriers : $BaTiO_3$

Question 3 : Is the tunneling conductance related to polarization orientation ?

First demonstration of ferroelectricity-related Tunneling Electro Resistance (TER)

🍟 Garcia et al, Nature 460 (2009)

From multilayers to devices : Solid-state ferroelectric tunnel junctions

✓ Nanoscale ferroelectric tunnel junctions defined by e-beam lithography (Φ ~0,2 to 1µm)

 \checkmark Each device can be electrically connected by the AFM tip for :

- ⇒ DC measurement of its resistance state
- ⇒ Voltage pulses to manipulate its ferroelectric state
- ⇒ Imaging of its ferroelectric state

Solid-state ferroelectric tunnel junctions

Ferroelectric tunnel junction ⇒ non volatile memory and memristor

Advanced modes :

Scanning NV Magnetometry

Seminal proposal: Chernobrod and Berman 2005 (JAP) First papers : 2008 Commercially available : 2020

The Nitrogen-Vacancy (NV) defect in diamond

NV defect in the diamond C-lattice

"Hortensia" diamond (Louvre, Paris)

An artificial atom "embeded" in the diamond lattice

NV defect optical properties

> Artificial atom with a spin triplet (S=1) ground state

108 Spin-dependent photoluminescence signal

The Nitrogen-Vacancy (NV) optical properties

Artificial atom with a spin triplet (S=1) ground state

Magnetic imaging with a single NV defect

Scanning-NV magnetometry

Experimental setup

- * Quantitative/vectorial (sensitivity $1 \mu T/Hz^{-1/2}$)
- ★ No magnetic back-action (unlike MFM)
- ★ Atomic-size detection volume
- ★ Spatial resolution depends on NV distance to the sample surface

The NV-based sensor: The Dark Age

The Dark Age : Diamond nanocrystal fishing

- Time and student consuming
- $d \sim 100 200 \text{ nm}$ (limiting spatial • resolution)
- random orientation of the NV axis
- **Regular AFM probes are fragile** ٠

The NV-based sensor: The Swiss Age

The Swiss Age : All-diamond probe hosting a single NV defect

(commercially available since 2018)

PL map of the diamond probe (top view)

- d ~ 30-50 nm
- Control of the NV axis orientation

A broad diversity of applications in condensed matter physics

Room temperature multiferroic: BiFeO₃

Sosnowska et al., J. Phys. C: Solid State Phys. 15, 4835 (1982)

Lebeugle et al., Phys. Rev. Lett. 100, 227602 (2008)

Each P_i^{\pm} : 3 propagation directions (k₁, k₂, k₃)
Let's play with strain: Epitaxial BiFeO3/SrRuO3//Substrates

Antiferromagnetic domains

Haykal Nat. Com. 2020

One Ferroelectric domain 🗇 A single Antiferromagnetic domain

Ferroelectric manipulation of the antiferromagnetic order

BiFeO3/SrRuO3//DyScO3

Gross et al., Nature (2017)

Manipulation of the ferroelectric state ⇒ manipulation of the AF state

Manipulation of the AF order: crafting new AF configurations?

Antiferromagnetic skyrmions ?

AFM : Beyond topography

STM

AFM

FIG. 52. STM and AFM measurements of 8-hydroxyquinoline (8-hq) assembled clusters on Cu(111).²⁶⁹ (a) Constant-current STM image ($2.5 \times 2 \text{ nm}^2$, V = -100 mV, I = 100 pA). (b) Constant-height frequency shift image ($2.5 \times 2 \text{ nm}^2$, V = 0 V, A = 100 pm, $f_0 = 27.0 \text{ kHz}$, k = 1800 N/m). (c) The corresponding structure model. The dashed lines refer to the intermolecular H-bonds. Reprinted with permission from X. Qiu. Copyright Xiaohui Qiu, Beijing.

J. Zhang *et al.* "Real-space identification of intermolecular bonding with atomic force microscopy," Science **342**, 611 (2013).

🍸 Franz J. Giessibl, Rev. Sci. Instrum. **90**, 011101 (2019)

AFM : Beyond topography

Myosin V (M5): M5 is one of motor proteins that function as cargo transporters in the cell. Single molecules of M5 move along actin filaments over a long distance.

International School of Oxide Electronics 2023 - Cargèse, Corsica

Thank you