Oxide interfaces

Manuel Bibes

Unité Mixte de Physique CNRS / Thales, Palaiseau (FRANCE)

7th International School of Oxide Electronics (ISOE2023)

Cargèse, September 2023

http://oxitronics.cnrs.fr

manuel.bibes@cnrs-thales.fr 🥥 @ManuelBibes

Transition metal perovskite oxides

- Very **flexible** structure doping, tuning of bond lengths and angles
- Broad range of **electronic states** superconductivity, ferroelectricity, magnetic order, orbital order
- Competition : **giant/coupled responses** colossal magnetoresistance, magnetoelectric coupling
- Multifunctional heteroepitaxial architectures

Transition metal perovskite oxides

D. Khomskii, « Transition metal compounds », Cambrige Univ. Press

- Broad range of **electronic states** superconductivity, ferroelectricity, magnetic order, orbital order
- Competition : **giant/coupled responses** colossal magnetoresistance, magnetoelectric coupling
- Multifunctional heteroepitaxial architectures

Crystal field splitting in cubic perovskites A or B cations are too small/big

- \rightarrow structural distorsions \rightarrow rotations of BO₆ octahedra
- \rightarrow B-O-B are not straight

CMS THALES UNIVERSITE

- \rightarrow degeneracy of e_g and t_{2g} levels may be lifted
- \rightarrow huge variety of properties

3

Transition metal perovskite oxides

- Very **flexible** structure doping, tuning of bond lengths and angles
- Broad range of **electronic states** superconductivity, ferroelectricity, magnetic order, orbital order
- Competition : **giant/coupled responses** colossal magnetoresistance, magnetoelectric coupling
- Multifunctional heteroepitaxial architectures

Oxide interfaces : new playground for physicists

STEM by X. Yang & A. Gloter (LPS Orsay)

CNIS THALES UNIVERSITE

Outline

- 1. SrTiO₃-based 2DEGs
 - **1.1 Physics of bulk SrTiO₃**
 - 1.2 LaAlO₃/SrTiO₃ 2DEGs
 - **1.3 Other SrTiO₃ 2DEGs**
 - **1.4 Electronic structure of SrTiO₃ 2DEGs**
 - **1.5 Superconductivity in SrTiO₃ 2DEGs**
 - **1.5 Introducing ferroic orders into SrTiO₃ 2DEGs**
- 2. KTaO₃-based 2DEGs
 - 2.1 Physics of bulk KTaO₃
 - 2.2 KTaO₃ 2DEGs
 - 2.3 Superconductivity in KTaO₃ 2DEGs

Outline

- 1. SrTiO₃-based 2DEGs
 - **1.1 Physics of bulk SrTiO₃**
 - 1.2 LaAlO₃/SrTiO₃ 2DEGs
 - **1.3 Other SrTiO₃ 2DEGs**
 - **1.4 Electronic structure of SrTiO₃ 2DEGs**
 - **1.5 Superconductivity in SrTiO₃ 2DEGs**
 - **1.5 Introducing ferroic orders into SrTiO₃ 2DEGs**
- 2. KTaO₃-based 2DEGs
 - 2.1 Physics of bulk KTaO₃
 - 2.2 KTaO₃ 2DEGs
 - 2.3 Superconductivity in KTaO₃ 2DEGs

7

Bulk SrTiO₃

Structural properties

Cowley et al, Solid. State. Commun. 7, 181 (1967)

 $\odot\ SrTiO_3$ is cubic at room temperature and above 105 K

• Below 105 K, it is tetragonal, with oxygen octahedra tilt pattern a⁰a⁰c⁻

Dielectric properties

• SrTiO₃ has a large dielectric constant that diverges at low temperature

• « Quantum paraelectric » : ferroelectric instability suppressed by quantum fluctuations

Transport properties of electron doped SrTiO₃

CMS THALES UNIVERSITE

SrTiO₃ can be (n-type) doped into a metal by La substitution at the Sr site, Nb substitution at the Ti site, or by the creation of oxygen vacancies
Minute doping amounts (e.g. 10 ppm) are enough to induce metallicity
Electron mobility is very high (>10000 cm²/Vs) at low T and decreases with doping

Tufte and Chapman PR 155, 796 (1967)

9

Superconductivity in electron doped SrTiO₃

SrTiO₃ becomes superconducting below about 300 mK for doping levels > a few 10¹⁸ cm-3
Dome-like phase diagram as in high T_C superconductors

CITS THALES UNIVERSITE

Koonce PR, 163, 780 (1967)

Mattheiss PRB 6, 4718 (1972)

• SrTiO₃ is a band insulator, with the valence band made of O 2p states and the conduction band of Ti 3d t_{2q} states

The gap is at the Gamma point with two degenerate bands with small and large effective masses
The light electron band has a « circular » Fermi surface around Gamma while the heavy electron band consists of a double ellipse.

Outline

- 1. SrTiO₃-based 2DEGs
 - **1.1 Physics of bulk SrTiO₃**
 - 1.2 LaAlO₃/SrTiO₃ 2DEGs
 - **1.3 Other SrTiO₃ 2DEGs**
 - **1.4 Electronic structure of SrTiO₃ 2DEGs**
 - **1.5 Superconductivity in SrTiO₃ 2DEGs**
 - **1.5 Introducing ferroic orders into SrTiO₃ 2DEGs**
- 2. KTaO₃-based 2DEGs
 - 2.1 Physics of bulk KTaO₃
 - 2.2 KTaO₃ 2DEGs
 - 2.3 Superconductivity in KTaO₃ 2DEGs

An unexpected discovery

Metallic interface despite both LAO and STO begin insulating
Low temperature mobility in the range of 1000 cm²/Vs

Ohtomo & Hwang, Nature 427, 423 (2004)

How to grow LAO/STO 2DEGs ?

TiO₂-terminated substrate

Essential steps:

- Use a TiO_2 terminated STO single crystal
- Grow an integer number of LAO unit cells \geq 4
- \odot Post-anneal in O₂

PLD growth conditions for LaAlO₃

⊙ 700-800°C

CMS THALES UNIVERSITE

- \odot 2 x 10⁻⁴ mbar of O₂
- KrF excimer (248nm) 0.6-1.2 J/cm² at 1 Hz

• in-situ annealing in high O_2 pressure (0.2-1 bar) at T ≥ 500°C for 30-60′

ISOE 2023

Do we really have a 2DEG ? How to measure its thickness ?

Magnetotransport measurements

• Metallic behaviour, high mobility, quantum oscillations : nice sample !

• But : electron gas thickness is **500 µm** ! Hint : this sample was **not post-annealed in oxygen**

Conductive-tip AFM in cross-section samples

Local measurement of transport properties

Resistance mapping of non-annealed samples

(as in Thiel et al, Science 313, 1942 (2006); Reyren et al, Science 317, 1196 (2007))

Basletic, MB, et al Nature Mater. 7, 621 (2008)

Resistance mapping of in-situ annealed sample

Resistance mapping of in-situ annealed sample

- > Low resistance (~10⁵ Ω) at LAO/STO interface
- > STO substrate is highly insulating far away (500 μ m) from the interface
- Conduction is confined at the interface
- Thickness of the metallic gas : 7 nm (upper estimate)

CNIS THALES UNIVERSITE

Basletic, MB, et al Nature Mater. 7, 621 (2008)

Calibration of $R_{tip-sample}$ vs n using Nb-doped SrTiO₃ crystals

Local mapping of the charge carrier distribution

Non annealed sample

Carrier density away from interface : 5.10¹⁸ cm⁻³ : $t_{gas} \approx 600 \ \mu m$

In-situ annealed sample

Carrier density at the interface : 7.10²¹ cm⁻³ : t_{gas}≈1 nm

Basletic, MB, et al Nature Mater. 7, 621 (2008)

Interfacial conductivity vs. LAO thickness

Critical thickness threshold for conductivity = 4 unit cells (uc) of LAO

S. Thiel et al., Science 313, 1942 (2006)

22

Mechanism for 2DEG formation : electronic reconstruction

CNIS THALES UNIVERSITE

Ohtomo and Hwang, Nature Mater

© F. Milletto

ISOE 2023

23

Mechanism for 2DEG formation : electronic reconstruction

Mechanism for 2DEG formation : electronic reconstruction

Mechanism for 2DEG formation : oxygen vacancies at LAO surface

Yu and Zunger, Nature Comm. 5, 5118 (2014)

Mechanism for 2DEG formation : oxygen vacancies at LAO surface

Yu and Zunger, Nature Comm. 5, 5118 (2014)

© F. Milletto

Mechanism for 2DEG formation : oxygen vacancies at LAO surface

Yu and Zunger, Nature Comm. 5, 5118 (2014)

© F. Milletto

So which mechanism is it ?

Hard to tell because

• Both mechanisms require a polar interface, i.e. no 2DEG for SrO-terminated STO

• Both mechanisms lead to a critical thickness of 4 unit cells

• But after 2DEG formation, there should be an E field in the 2DEG in the polar catastrophe scenario, but not in Yu and Zunger's model

Cross section scanning tunnel spectroscopy

Hard X-ray photoemission spectroscopy

• Core level shifts disagree with theory and no broadening

Slooten et al, PRB 87, 085128 (2013)

Outline

- 1. SrTiO₃-based 2DEGs
 - **1.1 Physics of bulk SrTiO₃**
 - 1.2 LaAlO₃/SrTiO₃ 2DEGs
 - **1.3 Other SrTiO₃ 2DEGs**
 - **1.4 Electronic structure of SrTiO₃ 2DEGs**
 - **1.5 Superconductivity in SrTiO₃ 2DEGs**
 - **1.5 Introducing ferroic orders into SrTiO₃ 2DEGs**
- 2. KTaO₃-based 2DEGs
 - 2.1 Physics of bulk KTaO₃
 - 2.2 KTaO₃ 2DEGs
 - 2.3 Superconductivity in KTaO₃ 2DEGs

- Deposition of 9 Å of aluminum
- Aluminum pulls oxygen from the STO
- Oxygen vacancies are formed

- Deposition of 9 Å of aluminum
- Aluminum pulls oxygen from the STO
- Oxygen vacancies are formed

- Deposition of 9 Å of aluminum
- Aluminum pulls oxygen from the STO
- Oxygen vacancies are formed
- A 2DEG emerges at the interface

- Deposition of 9 Å of aluminum
- Aluminum pulls oxygen from the STO
- Oxygen vacancies are formed
- A 2DEG emerges at the interface

- Deposition of 9 Å of aluminum
- Aluminum pulls oxygen from the STO
- Oxygen vacancies are formed
- A 2DEG emerges at the interface
- The deposited aluminum layer is completely oxidized
A 2DEG in Al/STO

Dependence of transport properties with AI thickness

Conductivity and carrier density increase with Al thickness
More oxygen vacancies, more carriers

Vicente-Arche, MB et al, PR Mater 5 064005 (2021)

First observation of 2DEG in Al/STO by Rödel et al, Adv. Mater. 28, 1976 (2016)

Outline

- 1. SrTiO₃-based 2DEGs
 - **1.1 Physics of bulk SrTiO₃**
 - 1.2 LaAlO₃/SrTiO₃ 2DEGs
 - **1.3 Other SrTiO₃ 2DEGs**
 - **1.4 Electronic structure of SrTiO₃ 2DEGs**
 - **1.5 Superconductivity in SrTiO₃ 2DEGs**
 - **1.5 Introducing ferroic orders into SrTiO₃ 2DEGs**
- 2. KTaO₃-based 2DEGs
 - 2.1 Physics of bulk KTaO₃
 - 2.2 KTaO₃ 2DEGs
 - 2.3 Superconductivity in KTaO₃ 2DEGs

A 2DEG at the surface of STO

Fracturing a STO crystal in vacuum creates a 2DEG at its surface
2DEG electronic structure very similar to that of the LAO/STO 2DEG

Santander, MB et al, Nature 469, 189 (2011)

CNIS THALES UNIVERSITE

Electronic structure of the 2DEG

• Compared to bulk STO, the degenerescence of the t_{2g} states is lifted (splitting is 50-100 meV)

- \odot Low lying d_{xy} band with light mass
- Above Lifshitz point, onset of second band with $d_{xz/yz}$ character and heavier mass
- Avoided crossing due to orbital mixing and spin orbit coupling (more on this later)

Quantum confiment and band structure

Spin/charge interconversion in Rashba systems

Rashba spin-orbit coupling

The **Rashba effect** – manifestation of spin-orbit interaction (SOI) in solids, more particularly in <u>two-dimensional electron systems</u>, where spin degeneracy is lifted due to a <u>symmetry-breaking electric field</u> normal to an heterointerface.

Strength of Rashba coupling is expressed by the Rashba coefficient α_{R} that is on the order of 20-50 meV.A in STO 2DEGs (cf around 1 eV.A at surfaces of heavy metals)

Electronic structure of STO 2DEGs determined by 4 ingredients

- Splitting of d_{xy} and $d_{xz/yz}$ bands by confinement potential Sub-bands dues to quantum confinement 1.
- 2.
- 3. Spin-orbit coupling
- 4. Orbital mixing

Vaz, MB et al, Nature Mater. 18, 1187 (2019)

Signatures in transport

Electrostatic gating

- At low carrier density (negative gate voltages), the Hall effect is linear : one type of carriers
- Upon adding carriers, the Hall effect becomes non-linear : two types of carriers
- Gate induced Lifshitz transition (at 1.5-2.5 10¹³ cm⁻²)

Joshua et al, Nature Comm. 3, 1129 (2012)

Outline

- 1. SrTiO₃-based 2DEGs
 - **1.1 Physics of bulk SrTiO₃**
 - 1.2 LaAlO₃/SrTiO₃ 2DEGs
 - **1.3 Other SrTiO₃ 2DEGs**
 - **1.4 Electronic structure of SrTiO₃ 2DEGs**
 - **1.5 Superconductivity in SrTiO₃ 2DEGs**
 - **1.5 Introducing ferroic orders into SrTiO₃ 2DEGs**
- 2. KTaO₃-based 2DEGs
 - 2.1 Physics of bulk KTaO₃
 - 2.2 KTaO₃ 2DEGs
 - 2.3 Superconductivity in KTaO₃ 2DEGs

Superconducting properties

Gate dependence

Back-gating

LaTiO₃/SrTiO₃

A. Caviglia et al Nature (2008)

Field effect devices

Tunneling experiments

• Determination of the superconducting gap and its evolution with T and gate V

Richter et al, Nature 502, 528 (2013)

Outline

- 1. SrTiO₃-based 2DEGs
 - **1.1 Physics of bulk SrTiO₃**
 - 1.2 LaAlO₃/SrTiO₃ 2DEGs
 - **1.3 Other SrTiO₃ 2DEGs**
 - **1.4 Electronic structure of SrTiO₃ 2DEGs**
 - **1.5 Superconductivity in SrTiO₃ 2DEGs**
 - **1.5 Introducing ferroic orders into SrTiO₃ 2DEGs**
- 2. KTaO₃-based 2DEGs
 - 2.1 Physics of bulk KTaO₃
 - 2.2 KTaO₃ 2DEGs
 - 2.3 Superconductivity in KTaO₃ 2DEGs

Ferroelectricity in SrTiO₃ by Ca substitution

Structure and dipolar behaviour of SrTiO₃

- Possibility to induce ferroelectricity behavior in $SrTiO_3$ by <u>ionic substitution</u>:
- \rightarrow Fraction x (at%) of Sr ions replaced by Ba, Pb or **Ca**
- \rightarrow For **Sr**_{1-x}**Ca**_x**TiO**₃, ferroelectric state present already at x = 0.25%
- \rightarrow T_c increases with x

- Oxygen vacancies
 Dull conductivity
- Bulk conductivity
- Ionic substitution
 Ferroelectric signature (structural transition)

Bednorz, J. G. & Müller, K. A., Phys. Rev. Lett. 52, 2289–2292 (1984) Rischau, C. W. et al.. Nature Phys 13, 643–648 (2017) Mitsui, et al. Phys. Rev. 124, 1354–1359 (1961)

57

2DEG fabrication and transport with Al/Sr_{0,99}Ca_{0,01}TiO₃

 \odot With 1,84 nm of Al sputtered, metallic behaviour is found at the Al//Sr_{1-x}Ca_xTiO_3 interface as in Al//SrTiO_3 2DEGs

 \odot A «kink» in the sheet resistance temperature dependence is visible around 30 K

→ Hall effect measurements show a change in carrier density evolution vs. temperature which coincides with $R_s(T) \ll kink \gg at 26 K$

Carrier density and sheet resistance vs. temperature

J. Bréhin, MB et al., Phys. Rev. Mat. 4, 041002(R) (2020)

Ferroelectricity in Al/Sr_{0,99}Ca_{0,01}TiO₃: polarization loops

 \odot Temperature dependence of the remnant polarization shows again the FE \leftrightarrow PE transition around 25 K

CMS THALES UNIVERSITE

J. Bréhin, MB et al., Phys. Rev. Mat. 4, 041002(R) (2020)

Ferroelectric behaviour of a 2DEG based on Al/Sr_{0,99}Ca_{0,01}TiO3

• Cycling of the sheet resistance and polarization w.r.t. electric-field both show hysteresis and match

• Carrier density is modulated at remanence by $\Delta n_s = 5,68.10^{12} \text{ cm}^{-2}$, i.e. $\pm 3,35\%$ of the total carrier density in initial state

J. Bréhin, MB et al., Phys. Rev. Mat. 4, 041002(R) (2020)

Engineering a magnetic 2DEG

Insert a monolayer of EuTiO₃ between LAO and STO

CITS THALES UNIVERSITE

ETO: EuTiO₃ (AF isolator in bulk C.L. Chien et al, PRB 10, 3913 (1974) but becomes FM when electron-doped T. Katsufuji et al, Phys. Rev. B. 60, R15021 (1999)

Cf previous work on LAO/ETO//STO 2DEGs by D. Stroniauolo et al, Nature Mater. 15, 278 (2016)

DFT calculations

Ferroelectricity induced by introducing 1.6% compressive strain
 2DEG forms and DOS at E_F depends on P direction

DFT calculations

- Ferroelectricity induced by introducing 1.6% compressive strain
- 2DEG forms and DOS at E_F depends on P direction
- Magnetic moment present in 2DEG region and depends on P direction : magnetoelectric coupling

DFT calculations

- Ferroelectricity induced by introducing 1.6% compressive strain
- 2DEG forms and DOS at E_F depends on P direction
- Magnetic moment present in 2DEG region and depends on P direction : magnetoelectric coupling
- Polar displacements present in STO away from and in the 2DEG region : **2DEG is ferroelectric**

J. Bréhin, MB et al, Nature Phys. 19, 823 (2023)

• Strong XLD expected from off-centered Ti ions with respect to oxygen ions in the 2DEG → electric dipole

O Strong XLD expected from off-centered Ti ions with respect to oxygen ions in the 2DEG → electric dipole
 O XLD depends on P direction → different electric dipole amplitude for different P state

Strong XLD expected from off-centered Ti ions with respect to oxygen ions in the 2DEG → electric dipole
 XLD depends on P direction → different electric dipole amplitude for different P state

- XLD depends on P direction -> different electric dipole amplitude for different P state
 Multiplet simulations reproducing data indicate larger electric dipole in D than D consister
- Multiplet simulations reproducing data indicate larger electric dipole in P_{dn} than P_{up}, consistent with DFT

Strong XLD expected from off-centered Ti ions with respect to oxygen ions in the 2DEG → electric dipole

- XLD depends on P direction → different electric dipole amplitude for different P state
- Multiplet simulations reproducing data indicate larger electric dipole in P_{dn} than P_{up}, consistent with DFT
- Switchable dipoles in the 2DEG region → the 2DEG is ferroelectric

```
Oxide interfaces
```

X-ray magnetic circular dichroism: probing magnetism in the 2DEG

O XAS at Ti L_{3,2} edge typical of Ti⁴⁺ with a small fraction of Ti³⁺ (few %), expected for STO 2DEGs.
 O Clear XMCD (2%) observed at Ti L_{3,2} edge → magnetic moments in the 2DEG

X-ray magnetic circular dichroism: probing magnetism in the 2DEG

• XAS at Ti $L_{3,2}$ edge typical of Ti⁴⁺ with a small fraction of Ti³⁺ (few %), expected for STO 2DEGs. • Clear XMCD (2%) observed at Ti $L_{3,2}$ edge \rightarrow magnetic moments in the 2DEG

• Hysteresis with in plane $B \rightarrow$ ferromagnetic order with in-plane easy axis

72
X-ray magnetic circular dichroism: probing magnetism in the 2DEG

• XAS at Ti $L_{3,2}$ edge typical of Ti⁴⁺ with a small fraction of Ti³⁺ (few %), expected for STO 2DEGs.

- Clear XMCD (2%) observed at Ti $L_{3,2}$ edge \rightarrow magnetic moments in the 2DEG
- Hysteresis with in plane B \rightarrow ferromagnetic order with in-plane easy axis
- \odot XMCD also observed at Eu M_{5,4} edge
- → the 2DEG is magnetic

• R vs T evidences **metallic behaviour** typical of STO 2DEGs

R vs T evidences metallic behaviour typical of STO 2DEGs
 Kink at low temperature at ~30 K signalling transition to ferroelectric state (also seen in Al/Ca-STO 2DEGs and in e-doped Ca-STO bulk)

75

• P vs V_G loops evidence **ferroelectric behaviour**

• P vs V_G loops evidence **ferroelectric behaviour**

• Rs vs V_G show reproducible hysteresis loops, absent in LAO/STO \rightarrow coupling between transport and FE

- P vs V_G loops evidence **ferroelectric behaviour**
- Rs vs V_{G} show reproducible hysteresis loops, absent in LAO/STO \rightarrow coupling between transport and FE
- Ferroelectric T_c is ~30 K, as expected
- Carrier density at electrical remanence is modulated up to T_c^E

• Anomalous Hall effect is observed at low T

- Anomalous Hall effect is observed at low T
- AHE amplitude depends on remanent polarization state (~20% change) → magnetoelectric coupling

- Anomalous Hall effect is observed at low T
- AHE amplitude depends on remanent polarization state (~20% change) → magnetoelectric coupling
- Temperature dependence suggests magnetic $T_C \sim 20K$

 $\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\end{array}\\
\end{array}\\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array}$ \left(\begin{array}
\end{array} \\
\end{array}
\left(\begin{array}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array}
\left(\begin{array}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array}
\left(\begin{array}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array}
\left(\begin{array}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array}
\left(\\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array}
\left(\\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array}
\left(\\
\end{array} \\
\end{array} \\
\end{array}
\left(\\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array}
\left(\\
\end{array} \\
\end{array} \\
\end{array}
\left(\\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array}
\left(\\
\end{array} \\
\end{array} \\
\end{array}
\left(\\
\end{array}
\left(\\
\end{array}
\left(\\
\end{array} \\
\end{array}
\left(\\
\end{array}
\left) \\
\end{array}
\left(\\
\end{array}
\left) \\
\end{array}
\left(\\
\end{array}
\left(\\
\end{array}
\left(\\
\end{array}
\left(\\
\end{array}
\left) \\
\end{array}
\left(\\
\end{array}
\left(\\
\end{array}
\left(\\
\end{array}
\left) \\
\end{array}
\left(\end{array}
\end{array}
\left(\\
\end{array}
\left(\\
\end{array}
\left) \\
\end{array}
\left(\end{array}

\left) \\
\end{array}
\left(\\
\end{array}
\left(\\
\end{array}
\left) \\
\end{array}
\left(\\
\end{array}
\left(\\
\end{array}
\left) \\
\end{array}
\left(\\
\end{array}
\left) \\
\end{array}
\left(\end{array}

\left) \\
\end{array}
\left(\end{array}

\left) \\
\end{array}
\left(\end{array}

\left) \\
\end{array}
\left(\\
\end{array}
\left) \\
\end{array}
\left(\\
\end{array}
\left) \\
\end{array}
\left(\\
\end{array}
\left) \\
\end{array}
\left(\\
\end{array}
\left) \\
\end{array}
\left(\\
\end{array}
\left) \\
\end{array}
\left) \\
\end{array}
\left(\end{array}

\left) \\
\end{array}
\left) \\
\end{array}
\left(\end{array}
 \\
\end{array}
\left) \\
\end{array}
\left(\end{array}
 \\
\end{array}
\left) \\
\end{array}
\left(\\
\end{array}
\left) \\
\end{array}
\left(\\
\end{array}
\left) \\
\end{array}
\left) \\
\end{array}
\left(\\
\end{array}
\left) \\
\bigg
\left) \\
\end{array}
\left) \\
\bigg
\bigg
\left) \\
\bigg
\left) \\
\bigg
\left) \\
\bigg
\left) \\

- Anomalous Hall effect is observed at low T
- ⊙ AHE amplitude depends on remanent polarization state (~20% change) → magnetoelectric coupling
- \odot Temperature dependence suggests magnetic T_C ~ 20K
- MR is parabolic at high T (Lorentz MR) but negative at low T → spin disordered state

- Anomalous Hall effect is observed at low T
- AHE amplitude depends on remanent polarization state (~20% change) → magnetoelectric coupling
- Temperature dependence suggests magnetic $T_C \sim 20K$
- MR is parabolic at high T (Lorentz MR) but negative at low T → spin disordered state
- \odot Inflection point in MR derivative also suggests magnetic T_c near 20 K

84

85

J. Bréhin, MB et al, Nature Phys. 19, 823 (2023)

CATS THALES UNIVERSITE

 $V_{G}(V)$

• Both the AHE and the MR are modulated by the polarization state at finite voltage and at remanence

$\begin{array}{c} 1.5 \\ 1.0 \\ 0.5 \\ 0.0 \\ -0.5 \\ -1.0 \\ -1.5 \\ -80 -60 -40 -20 \\ V_G (V) \end{array}$

J. Bréhin, MB et al, Nature Phys. 19, 823 (2023)

CATS THALES UNIVERSITE

CNIS THALES UNIVERSITE

Temperature dependence

- Electroresistance depends on temperature and magnetic field
- Electroresistance vanishes at T_C^E as expected
- Difference in electroresistance with and without magnetic field defines an **electro**-

magnetoresistance effect

• Electro-magnetoresistance vanishes when the first ordering temperature is reached (here T_C^M)

J. Bréhin, MB et al, Nature Phys. 19, 823 (2023)

ISOE 2023

Outline

- 1. SrTiO₃-based 2DEGs
 - **1.1 Physics of bulk SrTiO₃**
 - 1.2 LaAlO₃/SrTiO₃ 2DEGs
 - **1.3 Other SrTiO₃ 2DEGs**
 - **1.4 Electronic structure of SrTiO₃ 2DEGs**
 - **1.5 Superconductivity in SrTiO₃ 2DEGs**
 - **1.5 Introducing ferroic orders into SrTiO₃ 2DEGs**
- 2. KTaO₃-based 2DEGs
 - 2.1 Physics of bulk KTaO₃
 - 2.2 KTaO₃ 2DEGs
 - 2.3 Superconductivity in KTaO₃ 2DEGs

Transport properties of electron doped KTaO₃

- Like STO, bulk KTO can be made metallic upon minute n-type doping
- n-type KTO can show mobilities up to 20000 cm²/Vs, higher than bulk STO
- Main difference : Ta is heavier than Ti
- → Spin-orbit coupling in KTO than in STO

Wemple PR 137, A1565 (1965)

Outline

- 1. SrTiO₃-based 2DEGs
 - **1.1 Physics of bulk SrTiO₃**
 - 1.2 LaAlO₃/SrTiO₃ 2DEGs
 - **1.3 Other SrTiO₃ 2DEGs**
 - **1.4 Electronic structure of SrTiO₃ 2DEGs**
 - **1.5 Superconductivity in SrTiO₃ 2DEGs**
 - **1.5 Introducing ferroic orders into SrTiO₃ 2DEGs**
- 2. KTaO₃-based 2DEGs
 - 2.1 Physics of bulk KTaO₃

2.2 KTaO₃ 2DEGs

2.3 Superconductivity in KTaO₃ 2DEGs

KTaO₃ 2DEGs

APL MATERIALS 3, 036104 (2015)

PHYSICAL REVIEW B 80, 121308(R) (2009)

LaTiO₃/KTaO₃ interfaces: A new two-dimensional electron gas system

K. Zou,¹ Sohrab Ismail-Beigi,¹ Kim Kisslinger,² Xuan Shen,²³ Dong Su,² F. J. Walker,¹ and C. H. Ahn¹

• 2DEGs can be generated in KTO by depositing various overlayers such as LaTiO₃ or LaAlO₃

• Weak antilocalization data in electrolyte-gated KTO suggests Rashba SOC higher than in STO 2DEGs

See recent review: Gupta et al, Adv. Mater. 2106481 (2022)

Electric field tuning of spin-orbit coupling in KTaO₃ field-effect transistors

H. Nakamura and T. Kimura

Division of Materials Physics. Graduate School of Engineering Science, Oraka University, Toyonaka, Oraka 560-8531, Japan

Generation of KTaO₃ 2DEGs by AI sputtering at room temperature

Binding energy (eV)

Generation of KTaO₃ 2DEGs by AI sputtering at room temperature

- As in STO/Al, redox reaction at KTO/Al interface : 2DEG formation
- Proportion of reduced Ta increases with AI thickness
- Al/KTO interface looks clean in TEM

L.M. Vicente-Arche, MB et al, Adv. Mater. 28, 202102 (2021)

Transport properties of KTO/AI 2DEGs

• Metallic behavior observed with high electron mobility at low T

L.M. Vicente-Arche, MB et al, Adv. Mater. 28, 202102 (2021)

Transport properties of KTO/AI 2DEGs

Metallic behavior observed with high electron mobility at low T
 Carrier density and conductivity increase with Al thickness

L.M. Vicente-Arche, MB et al, Adv. Mater. 28, 202102 (2021)

Band structure of KTO 2DEGs

25K LH min max 0.0 (b) (c) -0.1 $E - E_F(eV)$ -0.2 -0.3 -0.4 Γ_002 -0.5 Γ012 Γ₁₁₂ -0.6 *********** -0.4 -0.2 0.0 0.2 0.4 -0.4 -0.2 0.0 0.2 0.4 ky (Å⁻¹) 0.0 0.2 0.4 k_y (Å⁻¹) -0.4 -0.2 k, (Å-1) 11 . 0.0 EFC FC -0. E - EF(eV) -0.2 -E n=2 -0.3 Ean=1 -0.4 --0.5 (e) (d) -0.6 0.0 0.2 0.4 ky (Å⁻¹) -0.4 -0.2 0.0 0.2 0.4 k_y (Å⁻¹) -0.4 -0.2 0.0 0.2 0.4 ky (Å⁻¹) -0.4 -0.2 0.4 2.0 2.0 1.8 0.2 -1.8 k, (Å') 1.6 1.6 0.0 ~ x 1.4-1.4 -0.2 Γ_002 Γ012 $\Gamma_{\overline{1}12}$ 1.2- (h) (g) (i) -0.4-1.2 -0.4 -0.2 0.0 0.2 0.4 k, (Å¹) -0.4 -0.2 0.0 0.2 0.4 k (Å') -2.0 -1.8 -1.6 -1.4 -1.2 k, (Å')

ARPES on (001) KTO surfaces

• Band structure ressembles that of STO surface or STO 2DEGs

• Low-lying light bands with dominant d_{xy} character

• Heavy band with dominant $d_{\rm xz/yz}$ character at higher energy

- Here, additional impurity band is observed
- Bands have lower mass than in STO 2DEGs

Santander-Syro, MB et al, PRB 86, 121107 (2012)

Direct visualization of the Rashba-split bands on KTO 2DEGs

Growth of 1-2 A of Al by MBE on KTO(001)
 ARPES at room temperature reveals same bands as in earlier literature (but no impurity band)

Cassiopée beamline, SOLEIL synchrotron, France

 \odot Band structure comparable to KTO surface, with light (d_xy) and heavy (d_xz/yz) bands

CL + CR

• Orange band pair exhibits large Rashba splitting with $\alpha_R \approx 320$ meV.Å (one order higher than STO 2DEGs)

• First direct visulalization of Rashba splitting in perovskite oxides

S. Varotto, MB et al. Nature Comm. 13, 6165 (2022)

Tight binding fits

LV + LH

Outline

- 1. SrTiO₃-based 2DEGs
 - **1.1 Physics of bulk SrTiO₃**
 - 1.2 LaAlO₃/SrTiO₃ 2DEGs
 - **1.3 Other SrTiO₃ 2DEGs**
 - **1.4 Electronic structure of SrTiO₃ 2DEGs**
 - **1.5 Superconductivity in SrTiO₃ 2DEGs**
 - **1.5 Introducing ferroic orders into SrTiO₃ 2DEGs**
- 2. KTaO₃-based 2DEGs
 - 2.1 Physics of bulk KTaO₃
 - 2.2 KTaO₃ 2DEGs
 - 2.3 Superconductivity in KTaO₃ 2DEGs

Very Low-Temperature Search for Superconductivity in Semiconducting KTaO₃

J. R. Thompson

Department of Physics, The University of Tennessee, Knoxville, Tennessee, and Solid State Division, Oak Ridge National Laboratory,* Oak Ridge, Tennessee

L. A. Boatner

Solid State Division, Oak Ridge National Laboratory,* Oak Ridge, Tennessee

J. O. Thomson

Department of Physics, The University of Tennessee, Knoxville, Tennessee

A series of attempts have been made to detect the presence of superconductivity in semiconducting potassium tantalate (KTaO₃) single crystals. Semiconducting potassium tantalate has a number of properties in common with semiconducting SrTiO₃, which is superconducting below ~ 0.3 K, with a critical temperature T_c that varies as a function of the carrier concentration. Both $KTaO_3$ and $SrTiO_3$ are perovskite-structure oxides and both materials are so-called incipient ferroelectrics that are characterized by high dielectric constants at low temperature. These common properties suggest that superconductivity might also be observed in semiconducting potassium tantalate. In the temperature , ange from 0.01 to 4.0 K, however, no evidence was found for superconductivity in KTaO₃ in the presence of magnetic fields of 10^{-5} - 10^{-4} T (i.e., 0.1-1 Oe). Below 1.5 K, the search for superconductivity in KTaO₃ was carried out using a ³He-⁴He dilution refrigerator equipped with a SQUID magnetometer and an ac magnetometer. The system response was verified by measuring the paramagnetic susceptibility of Dy₂O₃-doped KTaO₃. The failure to observe superconductivity in KTaO₃, while SrTiO₃ is an established superconducting material, may be related to the fact that the latter substance assumes a tetragonal symmetry phase at 105 K, while KTaO₃ remains cubic to low temperatures.

No superconductivity found in KTO until...

Search for superconductivity in KTO

Discovery of superconductivity in KTaO₃ by electrostatic carrier doping

K. Ueno^{1,2}, S. Nakamura^{3,4}, H. Shimotani⁵, H. T. Yuan⁵, N. Kimura^{4,6}, T. Nojima^{3,4}, H. Aoki^{4,6}, Y. Iwasa^{5,7} and M. Kawasaki^{1,5,7}*

Ionic liquid doping induces superconductivity in KTO(001) with T_C=47 mK, one order lower than in STO
 Critical carrier density about 4 10¹⁴ cm⁻², about one order higher than in STO 2DEGs.

CMS THALES UNIVERSITE

Ueno et al, Nature Nano. 6, 406 (2011)

Superconductivity in (111) KTO 2DEGs

Liu et al., Science 371, 716 (2021)

Formation of 2DEG at Al//KTO (111) interface

S. Mallik, MB et al, Nature Comm. 13, 4625 (2022)

Formation of 2DEG at Al//KTO (111) interface

S. Mallik, MB et al, Nature Comm. 13, 4625 (2022)

ISOE 2023

Superconductivity at Al//KTO (111) interface

Oxide interfaces

Superconductivity at Al//KTO (111) interface

Superfluid stiffness measurements

 \odot The flattening of the J_{exp} curve below 1K indicates a fully gapped behavior.

 \odot Unlike STO, simple BCS model could not explain the nature of the J_s (T) curve.

S. Mallik, MB et al, Nature Comm. 13, 4625 (2022)
Conclusions and perspectives

- Oxide interfaces have **unexpected electronic and magnetic properties**
- Some properties derive from the bulk of the compounds involved, **some are readily new**
- Inversion symmetry breaking is key to most new properties
- Both STO and KTO 2DEGs have Rashba SOC and are superconducting at low T
- Ferroic order can be introduced in these 2DEGs, expanding their functionalities
- Parameter space is huge and more exotic phenomena should arise from orbital and spin reconstruction (topological effects)

J. Varignon, MB et al., Nature Phys. 14, 322 (2018) F. Trier, MB et al, Nature Rev. Mater. 7, 258 (2022)

Post-doc positions available ! If interested talk to me at the School or email me at <u>manuel.bibes@cnrs-thales.fr</u>