

Introduction to Ferroelectrics

IIII

Pavlo Zubko University College London

ISOE – Cargèse – 2023

mage: Forsbergh, Phys. Rev. 1949

Video: M. Glazer Schilling et al. Phys Rev B 2016

550nm 180.000

φ

0.000 30.0C 80 (0.00 - 180.00) 12.5.

UCL Forsbergh patterns in BaTiO₃

Schilling et al. Phys Rev B 2016

Forsbergh (Phys. Rev. 1949)

Discovery of ferroelectricity

PIEZOELECTRIC AND ALLIED PHENOMENA IN ROCHELLE SALT.

By Joseph Valasek.

(AKA potassium sodium tartrate tetrahydrate, $KNaC_4H_4O_6.4H_2O$)

Joseph Valasek in 1922.

Ferroelectrics named after ferromagnets (not because they contain Fe...but there are some, e.g. BiFeO₃)

Physical Review 1921

Haertling J. Am. Cer. Soc. 1999

Ferroelectrics:

1) Possess spontaneous polarisation

(restricted by symmetry to pyroelectric point groups)

+

2) Polarisation must be switchable by applied field (below breakdown field) (practical restriction)

All ferroelectrics are piezoelectric & pyroelectric

UCL Properties & applications

UCL A few examples of ferroelectrics

Rochelle salt

Wide range of crystal structures from very complex to very simple

- KH₂PO₄ (KDP),
- (NH₂CH₂COOH)₃H₂SO₄ (TGS)
- P(VDF-TrFE)
- NaNO₂
- HCl, HBr
- and many, MANY others

<u>Oxides</u>

Perovskites

- BaTiO₃, PbTiO₃, KNbO₃, BiFeO₃, Pb(Zr,Ti)O₃ (PZT)... Other oxides:
- LiNbO₃, LiTaO₃, SrBi₂Ta₂O₉ (SBT), Bi₄Ti₃O₁₂, HfO₂...

Phase transition:

 $T > T_C$ - cubic, centrosymmetric $T < T_C$ - tetragonal, polar

Cooperative alignment of dipoles \rightarrow macroscopic polarisation

UCL Hold on...there are more!

UCL Massive dielectric response!

Huge dielectric constants! Especially near T_C

BaTiO₃-based dielectrics used in multilayer capacitors

Landau theory

- based on symmetry considerations
- provides no microscopic insight...but...
- links different macroscopic properties through thermodynamics

Landau anzatz: expand free energy in powers of order parameter(s).

Primary OP = P (proper ferroelectrics)

$$F = \frac{\alpha}{2}P^{2} + \frac{\beta}{4}P^{4} + \frac{\gamma}{6}P^{6} + \dots - EP$$

Allowed terms constrained by symmetry (free energy must describe ferro- and para- phase)

Simplest potential describing a phase transition

$$F = \frac{\alpha}{2}P^2 + \frac{\beta}{4}P^4 - EP$$

Assume:

- $\alpha = \alpha_0 (T T_0)$
- $\beta > 0$ & temp. independent (last term in expansion must be positive for stability)

In zero field, equilibrium when $\frac{\partial F}{\partial P} = 0$

$$\frac{\partial F}{\partial P} = \alpha P + \beta P^3 = 0$$

 \rightarrow spontaneous polarisation P_s

$$P_s^2 = -\frac{\alpha}{\beta} = \frac{\alpha_0(T_0 - T)}{\beta}$$

2nd order PT – OP changes continuously

UCL Phenomenology: pyroelectricity

Glass, Phys. Rev. 1968

In electric field, $\frac{\partial F}{\partial P} = 0$ gives

$$\alpha P + \beta P^3 - E = 0$$

→ Ferroelectric hysteresis

 \rightarrow Intrinsic coercive field E_C

Intrinsic coercive field (homogeneous reversal of polarisation) \gg experimental E_C

In practice switching is domain mediated and the intrinsic coercive field is not observed

Damjanovic, Rep. Prog. Phys. 1998

Switching proceeds via domain nucleation and growth

50 40 30 Polarization ($\mu C/cm^2$) Р 20 10 в F 0 - E_c +E_c -10 -20 -30 P_R -40 - 5 0 -300 -200 -100 100 200 0 300 Electric field (kV/cm)

Dawber et al. Rev. Mod. Phys. (2005)

Switching is usually inhomogeneous (nucleation at predetermined sites)

UCL Measuring polarisation reversal

Sawyer-Tower method Sawyer, Tower, Phys. Rev. 35, 269 (1930)

Commercial testers

UCL Beware of bananas!

IOP PUBLISHING

J. Phys.: Condens. Matter 20 (2008) 021001 (2pp)

JOURNAL OF PHYSICS: CONDENSED MATTER

doi:10.1088/0953-8984/20/02/021001

VIEWPOINT

Ferroelectrics go bananas

Common hysteresis artifacts:

- (a) dead short
- (b) linear lossy dielectric,
- (c) saturated amplifier
- (d) nonlinear lossy dielectric.

Dawber et al. Rev. Mod. Phys. (2005)

UCL Measuring remnant polarisation

Image: Damjanovic, Rep. Prog. Phys. 1998

- Look at switching current
- Frequency dependence
- PUND

Note: only measure **changes** in polarisation

UCL More subtle artefacts

Domain wall conductivity

McClusky et al. Adv. Func. Mater. 2020

Pintilie & Alexe, APL 2005

Phenomenology: dielectric response

Dielectric constant diverges at 2nd order PT

Maxwell-Wagner effects

Often have a two (or more) component system, e.g. bulk + grain boundaries + metal/dielectric interface, Schottky barrier capacitance, etc...

Different C_i , R_i have different temperature dependences that combine to give a complex, frequency dependent dielectric response

Relaxations also due to space charge, domain wall motion etc.

Always measure the frequency dependence!

Mechanism for Internal Barrier Layer Capacitors (IBLC)

Sinclair et al. APL 2002

^AUCL Phenomenology – 1st order transitions

If $\beta < 0$, need to include P^6 term.

$$F = \frac{\alpha}{2}P^{2} + \frac{\beta}{4}P^{4} + \frac{\gamma}{6}P^{6}$$

$$T_C = T_0 + \frac{3}{16} \frac{\beta^2}{\alpha_0 \gamma} \qquad T_C \neq T_0$$

Many ferroelectrics are weakly first order in bulk (e.g. PbTiO₃, BaTiO₃)

Ferroelectric phase transitions often classified as being displacive or orderdisorder:

- Displacive symmetry change results from displacement of atoms with respect to the more symmetric phase
- Order-disorder symmetry change at transition results from redistribution of atoms over equiprobable positions

Generally, phase transitions have both displacive and order-disorder character

Toy model:

Cochran 1960

e.g. eight-site model for BaTiO₃

Generally, both displacive and order-disorder character present

$$F = \frac{\alpha}{2}P^2 + \frac{\beta}{4}P^4 + \dots + \frac{1}{2}C\eta^2 - g\eta P^2 - \eta\sigma - EP$$

In equilibrium
$$\frac{\partial F}{\partial P} = 0$$
, $\frac{\partial F}{\partial \eta} = 0$

 $C\eta - gP^2 - \sigma = 0$

Free crystal, fix
$$\sigma = 0 \rightarrow \eta = \frac{gP^2}{c}$$

Spontaneous strain along P

Coupling to strain especially strong in PbTiO₃ due to polarisability of the lone pair on Pb

- $P \rightarrow P_i$ polarisation vector $C \rightarrow C_{ijkl}$ elastic compliance tensor $\eta
 ightarrow \eta_{ij}$ strain tensor
- $g \rightarrow g_{ijkl}$ electrostrictive coefficients
- $\sigma \rightarrow \sigma_{ij}$ stress tensor

Cohen Nature 1992

UCL Using Landau theory for predictions

$$F = \frac{\alpha}{2}P^2 + \frac{\beta}{4}P^4 + \dots + \frac{g^2}{2C}P^4 - \frac{g^2}{C}P^4 = \frac{\alpha}{2}P^2 + \left(\frac{\beta}{4} - \frac{g^2}{2C}\right)P^4 + \dots$$

Spontaneous strain renormalizes P^4 coefficient! Can lead to change in the order of PT

If instead we fix η (clamped crystal) – renormalize P^2 coefficient – <u>change</u> T_C !

Choi et al. Science 2004

BASIS FOR STRAIN ENGINEERING!

New phases unavailable in bulk!

Koukhar et al. PRB 2001

See also review by Schlom et al. Annu. Rev. Mat. Res. 2007

Strain-induced ferroelectricity in SrTiO₃

UCL The elastic dielectric – piezoresponse

Linear electromechanical coupling

$$d = \frac{\partial \eta}{\partial E} = \frac{\partial \eta}{\partial P} \frac{\partial P}{\partial E} = \left(-\frac{2gP}{C}\right)\chi\epsilon_0$$

enhanced at morphotropic phase boundary (MPB)

Intermediate monoclinic phase (M) facilitates polarisation rotation \rightarrow large piezoresponse

UCL Pb-based relaxors

- Park & Shrout JAP 1997 1.4 Single Crystal PZN-4.5%PT 1.2 (001)Single Crystal 1.0 Single Crystal PZN-8%P Single Crystal PMN-24%PT (001)Strain (%) 0.8 PZN (001) (001) 0.6 0.4 Ceramics, PZT-5H 0.2 Ceramics, PMN-PT Ceramics, PZT-8 0.060 120 150 30 90 Electric Field (kV/cm)
- Broad, frequency dependent dielectric anomaly
- No macroscopic structural phase transition
- Compositional disorder
- Mobile polar nanoregions (PNRs) that freeze below T_f or transition to ferroelectric state at T_C
- Giant electromechanical response!

See lecture by Brahim Dkhil

Exploit piezoresponse to probe ferroelectricity and ferroelectric domains using AFM

Imaging:

- Apply voltage between tip and sample
- Sample expands or contracts piezoelectrically depending on local direction of *P*

Writing:

• Apply large enough voltage to switch P

PFM microportrait of Jim Scott Canvas: BiFeO₃ thin film

UCL Ferroelectric thin films

- Finally enabled *ferroelectricity* to be exploited
 - FeRAM
 - Fe tunnel junctions
 - FeFET
- Must consider the properties of the whole system (M-F-M or M-F-S)
- Properties can be dominated by the interface rather than the ferroelectric itself

FERROELECTRIC MEMORIES

Thin films tend to have:

- smeared out transition
- reduced dielectric constants
- reduced/less stable polarisation

At surfaces

- Change in bonding
- Electrostatic boundary conditions
- Mechanical boundary conditions

Critical thickness for ferroelectricity has progressively decreased as better quality films have been made

Boundary conditions – very important!

UCL Depolarising field

 $D = \epsilon_0 E + P$

ideal short circuit

$$D = 0, E = -\frac{P}{\epsilon_0}$$

E = 0, D = P

UCL Depolarising field suppresses ferroelectricity

 $\lambda_{eff} \sim 10 - 20 \text{ pm}$

Junquera, Ghosez Nature 2003

UCL Surface chemistry matters

 For certain metal-ferroelectric combinations, 'dead layers' can be avoided

• Ferroelectricity can even be enhanced!

Chang et al. Adv. Mater. 2009

Domain formation

Domain wall energy (σ_{dw}) vs. electric field energy (U)

$$\Delta F = \sigma_{dw} \frac{d}{w} + Uw$$
$$w = \sqrt{\frac{\sigma_{dw}}{U}} d$$

Landau-Lifshitz-Kittel law

UCL Domains in tetragonal ferroelectrics

Respond to applied electric fields

Ferroelastic – respond to electric fields and mechanical stress

(The \sqrt{d} law also applies to ferroelastic domains)

LCCN LONDON CENTRE FOR NANOTECHNOLOGY

Landau-Lifshitz-Kittel scaling

UCL Consequences for properties

(a)

(b)

(c)

400

46

UCL Enhancement of dielectric response

PbTiO₃-SrTiO₃ superlattices

PZT ceramics

Lin, Damjanovic – APL 2010

ω

PRL 104, 187601 (2010)

See also lecture on negative capacitance on Friday

Domain wall functionality

Domain walls break symmetry of the bulk \rightarrow new properties!

Seidel et al. Nat. Mater. 2009

Ferrielectric domain walls in CaTiO₃

Polar domain walls in SrTiO₃

Conducting domain walls in ferroelectrics

Photovoltaic response at domain walls in BiFeO₃

Yang et al. Nat. Nanotech. 2010

Superconducting DWs in WO_{3-x}

Magnetism at domain walls

Farokhipoor et al. Nature 2015

"Domain Wall Nanoelectronics" – Catalan *et al.* Rev. Mod. Phys. 2012

DW structure often not purely Ising-like

Lee et al. Phys. Rev. B 2009

(also Stepkova et al. JPCM 2012)

Many interesting theoretical predictions for domain walls and domain structures still to be experimentally explored!

Wojdel & Iniguez, PRL 2014

Catalan et al. Rev Mod Phys 2011

Above T_c

Large polarisation-strain coupling – large energy penalty for polarisation rotation in bulk

BUT in very thing films & nanostructures can have large local distortions - unusual polarisation structures possible

Naumov & Bellaiche Nature 2004

Nelson et al. Nano Letters 2011

Jia et al. Science 2011

UCL Domains in ferroelectric superlattices

Zubko et al. PRL 2010; Nano Letters 2012

'Flux-closure domains/vortices'

Tang *et al.,* Science. 2015

Yadav et al. Nature 2016

Liu et al. Nano Letters 17, 7258 (2017)

Hadjimichael et al. Nat. Mat. (2021)

UCL Free-standing membranes & nanostructures

Y. Li et al. Adv. Mater. (2022)

UCL Skyrmion bubbles

Pereira Goncalves et al. Science Advances 2019

Das et al. Nature 2019

See lecture by Jorge Iñiguez

UCL A zoo of topological objects

Merons

Wang et al. Nat Mat 2020

Skyrmion bubbles Das et al. Nature 2019

See lecture by Jorge Iñiguez

L A flavour of current activity

- Hafnia ferroelectrics <u>talk by Beatriz</u> <u>Noheda</u>
- Antiferroelectrics <u>talk by Karin Rabe</u>
- 2D van der Waals ferroelectrics
- Domain wall functionality
- Strain engineering
- Flexoelectricity talk by Tae Won Noh
- Ferroelectric photovoltaics
- Negative capacitance <u>talk on Friday</u>
- Ferroelectric field effect devices & tunnel junctions
- Ferroelectrics for neuromorphic computing – <u>talk by Beatriz Noheda</u>
- Electrocalorics <u>talk by Emmanuel Defay</u>
- Free-standing films <u>talk by Mariona Coll</u>

- Multiferroics <u>talk by Morgan Trassin</u>
- Topology in ferroelectrics <u>talk by Jorge</u> <u>lñiguez</u>
- Relaxors <u>talk by Brahim Dkhil</u>
- Ferroelectric quantum criticality
- Artificially layered ferroelectrics
- 'Ferroelectric metals'